×

Dynamics and stability of permanent-magnet synchronous motor. (English) Zbl 1426.78027

Summary: The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM). PMSM equilibrium local stability condition and Hopf bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations not only confirm the theoretical analysis results but also show one kind of codimension-two-bifurcation points of the equilibrium. PMSM, with or without external load, can exhibit rich dynamic behaviors in different parameters regions. It is shown that if unstable equilibrium appears in the parameters regions, the PMSM may not be able to work stably. To ensure the PMSMs work stably, the inherent parameters should be designed in the region which has only one stable equilibrium.

MSC:

78A55 Technical applications of optics and electromagnetic theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] Draou, A., A simplified sliding mode controlled electronic differential for an electric vehicle with two independent wheel drives, Energy & Power Engineering, 5, 6, 416-421, (2013) · doi:10.4236/epe.2013.56044
[2] Yu, H.; Xi, J.; Zhang, F.; Hu, Y., Research on gear shifting process without disengaging clutch for a parallel hybrid electric vehicle equipped with AMT, Mathematical Problems in Engineering, 2014, (2014) · doi:10.1155/2014/985652
[3] Lu, Z.; Sun, X.; Zhang, J., Design and control of disc PMSM directly driven wheel for tramcar, Advances in Mechanical Engineering, 2014, (2014) · doi:10.1155/2014/747636
[4] Kreim, A.; Schäfer, U., An approach to an optimal design of permanent magnet synchronous machines for battery electric vehicles, Proceedings of 27th World Electric Vehicle Symposium and Exhibition, EVS 2014 · doi:10.1109/EVS.2013.6914872
[5] Bramerdorfer, G.; Amrhein, W.; Winkler, S. M.; Affenzeller, M., Identification of a nonlinear PMSM model using symbolic regression and its application to current optimization scenarios, 628-633 · doi:10.1109/IECON.2014.7048566
[6] Chao, W.; Qiang, G.; Yuanlong, H.; Runmin, H.; Hao, M., Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system, Advances in Mechanical Engineering, 8, 3, 1-12, (2016) · doi:10.1177/1687814016639250
[7] Song, P.; Xia, CL.; Yan, Y., Matrix converter fed permanent magnet synchronous motor drive system, Proceedings of the CSEE, 31, 9, 58-65
[8] Li, H. S.; Zhou, Y.; Cao, Q., Mathematical deduction and stability analysis of PMSm open-loop control system, 36-43, (2014)
[9] Hinkkanen, M.; Tuovinen, T.; Harnefors, L.; Luomi, J., A combined position and stator-resistance observer for salient PMSM drives: Design and stability analysis, IEEE Transactions on Power Electronics, 27, 2, 601-609, (2012) · doi:10.1109/TPEL.2011.2118232
[10] Ortega, R.; Praly, L.; Astolfi, A.; Lee, J.; Nam, K., Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability, IEEE Transactions on Control Systems Technology, 19, 3, 601-614, (2011) · doi:10.1109/TCST.2010.2047396
[11] Novák, M.; Flah, A.; Novák, J., Online high-speed pmsm parameters estimation and stability analysis, Acta Polytechnica Hungarica, 11, 9, 75-94, (2014)
[12] Yadav, A. K.; Gaur, P.; Saxena, P., Robust stability analysis of pmsm with parametric uncertainty using kharitonov theorem, Journal of Electrical Systems, 12, 2, 258-277, (2016)
[13] Guo, X.; Wen, X.; Zhao, F.; Song, X.; Zhuang, X., PI parameter design of the flux weakening control for PMSM based on small signal and transfer function, Proceedings of 12th International Conference on Electrical Machines and Systems, ICEMS 2009 · doi:10.1109/ICEMS.2009.5382982
[14] Chang, S. C.; Lin, B. C., Dither signal effects on quenching chaos of a permanent magnet synchronous motor in electric vehicles, Journal of Vibration & Control, 17, 12, 1912-1918, (2011) · Zbl 1271.78040 · doi:10.1177/1077546310395978
[15] Chang, S.-C.; Lin, H.-P., Study on controlling chaos of permanent magnet synchronous motor in electric vehicles, International Journal of Vehicle Design, 58, 2-4, 387-398, (2012) · doi:10.1504/IJVD.2012.047386
[16] Wang, X.; Suh, C. S., Nonlinear time-frequency control of PM synchronous motor instability applicable to electric vehicle application, International Journal of Dynamics & Control, 4, 1, 400-412, (2016) · doi:10.1007/s40435-014-0145-y
[17] Zhong, L.; Park, J. B.; Joo, Y. H.; Zhang Bo Chen, G.-R., Bifurcations and chaos in a permanent magnet synchronous motor, IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 49, 3, 383-387, (2002)
[18] Jing, Z. J.; Chang, Y.; Chen, G. R., Complex dynamics in a permanent-magnet synchronous motor model, Chaos, Solitons & Fractals, 22, 4, 831-848, (2004) · Zbl 1129.70329 · doi:10.1016/j.chaos.2004.02.054
[19] Pereda, J. A.; Vielva, L. A.; Vegas, A., Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion, IEEE Transactions on Microwave Theory & Techniques, 49, 2, 377-381, (2001) · doi:10.1109/22.903100
[20] Gordillo, F.; Salas, F.; Ortega, R.; Aracil, J., Hopf bifurcation in indirect field-oriented control of induction motors, Automatica. A Journal of IFAC, the International Federation of Automatic Control, 38, 5, 829-835, (2002) · Zbl 1007.93054 · doi:10.1016/S0005-1098(01)00274-6
[21] Alligood, K. T.; Sauer, T. D.; York, J. A., Chaos: An Introduction to Dynamical Systems, (1996), New York, NY, USA: Springer, New York, NY, USA · Zbl 0867.58043 · doi:10.1007/978-3-642-59281-2
[22] Liu, P.; Shi, J.; Wang, Y., Imperfect transcritical and pitchfork bifurcations, Journal of Functional Analysis, 251, 2, 573-600, (2007) · Zbl 1139.47042 · doi:10.1016/j.jfa.2007.06.015
[23] Fiedler, B.; Yanchuk, S.; Flunkert, V., Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser, Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 77, 6, (2008) · doi:10.1103/PhysRevE.77.066207
[24] Deng, Z.; Shang, J.; Nian, X., Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints, ISA Transactions, 59, 243-255, (2015) · doi:10.1016/j.isatra.2015.08.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.