×

Proportional retarded controller to stabilize underactuated systems with measurement delays: Furuta pendulum case study. (English) Zbl 1426.93227

Summary: The design and tuning of a simple feedback strategy with delay to stabilize a class of underactuated mechanical systems with dead time are presented. A linear time-invariant (LTI) model with time delay of fourth order and a Proportional Retarded (PR) controller are considered. The PR controller is shown as an appealing alternative to the application of observer-based controllers. This paper gives a step forward to obtain a better understanding of the effect of output delays and related phenomena in mechatronic systems, making it possible to design resilient control laws under the presence of uncertain time delays in measurements and obtain an acceptable performance without using a derivative action. The Furuta pendulum is a standard two-degrees-of-freedom benchmark example from the class of underactuated mechanical systems. The configuration under study includes an inherent output delay due to wireless communication used to transmit measurements of the pendulum’s angular position. Our approach offers a constructive design and a procedure based on a combination of root loci and Mikhailov methods for the analysis of stability. Experiments over a laboratory platform are reported and a comparison with a standard linear state feedback control law shows the advantages of the proposed scheme.

MSC:

93C95 Application models in control theory
70Q05 Control of mechanical systems
93D15 Stabilization of systems by feedback

Software:

DDE-BIFTOOL
Full Text: DOI

References:

[1] Spong, M., Partial feedback linearization of underactuated mechanical systems, Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (IROS’94), IEEE · doi:10.1109/IROS.1994.407375
[2] Reyhanoglu, M.; van der Schaft, A.; McClamroch, N. H.; Kolmanovsky, I., Dynamics and control of a class of underactuated mechanical systems, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 44, 9, 1663-1671, (1999) · Zbl 0958.93078 · doi:10.1109/9.788533
[3] Bloch, A. M.; Leonard, N. E.; Marsden, J. E., Controlled Lagrangians and the stabilization of mechanical systems i: the first matching theorem, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 45, 12, 2253-2270, (2000) · Zbl 1056.93604 · doi:10.1109/9.895562
[4] Ortega, R.; Spong, M. W.; Gómez-Estern, F.; Blankenstein, G., Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 47, 8, 1218-1233, (2002) · Zbl 1364.93662 · doi:10.1109/TAC.2002.800770
[5] Olfati-Saber, R., Normal forms for underactuated mechanical systems with symmetry, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 47, 2, 305-308, (2002) · Zbl 1364.70037 · doi:10.1109/9.983365
[6] Acosta, J. A.; Ortega, R.; Astolfi, A.; Mahindrakar, A. D., Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 50, 12, 1936-1955, (2005) · Zbl 1365.70029 · doi:10.1109/TAC.2005.860292
[7] Shiriaev, A. S.; Freidovich, L. B.; Gusev, S. V., Transverse linearization for controlled mechanical systems with several passive degrees of freedom, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 55, 4, 893-906, (2010) · Zbl 1368.93106 · doi:10.1109/TAC.2010.2042000
[8] Liu, Y.; Yu, H., A survey of underactuated mechanical systems, IET Control Theory & Applications, 7, 7, 921-935, (2013) · doi:10.1049/iet-cta.2012.0505
[9] Shiriaev, A. S.; Freidovich, L. B.; Spong, M. W., Controlled invariants and trajectory planning for underactuated mechanical systems, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 59, 9, 2555-2561, (2014) · Zbl 1360.93479 · doi:10.1109/TAC.2014.2308641
[10] PendCon, PendCon Advanced: Rotary Pendulum, Germany
[11] Ploplys, N. J.; Kawka, P. A.; Alleyne, A. G., Closed-loop control over wireless networks, IEEE Control Systems Magazine, 24, 3, 58-71, (2004) · doi:10.1109/MCS.2004.1299533
[12] Gungor, V. C.; Hancke, G. P., Industrial wireless sensor networks: challenges, design principles, and technical approaches, IEEE Transactions on Industrial Electronics, 56, 10, 4258-4265, (2009) · doi:10.1109/TIE.2009.2015754
[13] Curiac, D.-I., Towards wireless sensor, actuator and robot networks: conceptual framework, challenges and perspectives, Journal of Network and Computer Applications, 63, 1, 14-23, (2009) · doi:10.1016/j.jnca.2016.01.013
[14] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control, 76, 9-10, 924-941, (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[15] Khalil, H. K.; Praly, L., High-gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control, 24, 6, 993-1015, (2014) · Zbl 1291.93054 · doi:10.1002/rnc.3051
[16] Villafuerte, R.; Mondié, S.; Garrido, R., Tuning of proportional retarded controllers: theory and experiments, IEEE Transactions on Control Systems Technology, 21, 3, 983-990, (2013) · doi:10.1109/TCST.2012.2195664
[17] Ortega, T.; Villafuerte, R.; Vázquez, C.; Freidovich, L., Performance without tweaking differentiators via a PR controller: furuta pendulum case study, Proceedings of the 2016 IEEE International Conference on Robotics and Automation, (ICRA ’16), IEEE · doi:10.1109/ICRA.2016.7487566
[18] Suh, I. H.; Bien, Z., Proportional minus delay controller, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 24, 2, 370-372, (1979) · Zbl 0399.93023 · doi:10.1109/TAC.1979.1102024
[19] Suh, I. H.; Bien, Z., Use of time-delay actions in the controller design, IEEE Transactions on Automatic Control, 25, 3, 600-603, (1980) · Zbl 0432.93044 · doi:10.1109/TAC.1980.1102347
[20] Swisher, G. M.; Shing, T., Design of proportional-minus-delay action feedback controllers for second- and third-order systems, Proceedings of the 1988 American Control Conference
[21] Abadallah, C.; Dorato, P.; Benites-Read, J.; Byrne, R., Delayed positive feedback can stailize oscillatory systems, Proceedings of the American Control Conference
[22] Zhong, Q.; Li, H., A delay-type pid controller, IFAC Proceedings Volumes. IFAC Proceedings Volumes, 15th Triennial World Congress, 35, 265-270, (2002), Barcelona, Spain · doi:10.3182/20020721-6-ES-1901.00125
[23] Niculescu, S.-I.; Michiels, W., Stabilizing a chain of integrators using multiple delays, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 49, 5, 802-807, (2004) · Zbl 1365.93412 · doi:10.1109/TAC.2004.828326
[24] Kharitonov, V. L.; Niculescu, S.-I.; Moreno, J.; Michiels, W., Static output feedback stabilization: necessary conditions for multiple delay controllers, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 50, 1, 82-86, (2005) · Zbl 1365.93448 · doi:10.1109/TAC.2004.841137
[25] Krstic, M., Delay Compensation for Nonlinear, Adaptative, and PDE Systems, (2009), Basel, Switzerland: Birkhäuser, Basel, Switzerland · Zbl 1181.93003
[26] Olgac, N.; Cavdaroglu, M. E., Full-state feedback controller design with “delay scheduling” for cart-and-pendulum dynamics, Mechatronics, 21, 1, 38-47, (2011) · doi:10.1016/j.mechatronics.2010.08.007
[27] Mazenc, F.; Malisoff, M., New control design for bounded backstepping under input delays, Automatica, 66, 48-55, (2016) · Zbl 1335.93060 · doi:10.1016/j.automatica.2015.12.012
[28] Fridman, E., Introduction to Time-delay Systems: Analysis and Control, (2014), Berlin, Germany: Springer, Berlin, Germany · Zbl 1303.93005 · doi:10.1007/978-3-319-09393-2
[29] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of Time Delay Systems. Stability of Time Delay Systems, Control eniginnering, (2003), Berlin, Germany: Sprnger, Berlin, Germany · Zbl 1039.34067 · doi:10.1007/978-1-4612-0039-0
[30] Engelborghs, K.; Luzyanina, T.; Roose, D., Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, IEEE Transactions on Automatic Control, 54, 1, 171-177, (2002) · Zbl 1070.65556 · doi:10.1145/513001.513002
[31] Dellnitz, M.; Schutze, O.; Zheng, Q., Locating all the zeros of an analytic function in one complex variable, Journal of Computational and Applied Mathematics, 138, 2, 325-333, (2002) · Zbl 0993.65057 · doi:10.1016/S0377-0427(01)00371-5
[32] Vyhlídal, T.; Zítek, P., Mapping based algorithm for large-scale computation of quasi-polynomial zeros, IEEE Transactions on Automatic Control, 28, 1, 1-21, (2009) · Zbl 1367.65076 · doi:10.1109/TAC.2008.2008345
[33] Aström, K.; Furuta, K., Swining up a pendulum by energy control, FAC 13th World Congress, (1996)
[34] Ramírez-Neria, M.; Sira-Ramírez, H.; Garrido-Moctezuma, R.; Luviano-Juárez, A., Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum, ISA Transactions, 53, 4, 920-928, (2014) · doi:10.1016/j.isatra.2013.09.023
[35] Mikhailov, A., Method of harmonic analysis in control theory, Avtomatika i Telemekhanika, 3, 1, 27-81, (1938)
[36] Kabaknov, I., Concerning the control process for the steam pressure, Inzenernyj Sobrnik, 2, 2, 27-60, (1946)
[37] Forys, U., Biological delay systems and the mikhailov criterion of stability, Journal of Biological Systems, 12, 1, 45-60, (2004) · Zbl 1101.92001 · doi:10.1142/S0218339004001014
[38] Neimark, J., D-subdivisions and spaces of quasi-polynomials, Prikl. Mat. Meh, 13, 1, 349-380, (1949) · Zbl 0039.30304
[39] Michiels, W.; Niculescu, S.-I., Stability, control, and computation for time-delay systems: an eigenvalue-based approach, SIAM: Advances in Design and Control, 27, (2014) · Zbl 1305.93002
[40] Li, X.-G.; Niculescu, S.-I.; Cela, A., Analytic curve frequency-sweeping stability tests for systems with commensurate delays, Springer Briefs in Electrical and Computer Engineering: Control, Automation and Robotics, (2015) · Zbl 1395.93004
[41] Cooke, K.; Van Den Driessche, P., On the zeros of some elementary transcendental functions, American Mathematical Society Translations, 2, 1, 95-110, (1955) · Zbl 0068.05803
[42] Cooke, K. L.; Van den Driessche, P., On zeroes of some transcendental equations, Funkcialaj Ekvacioj, 29, 1, 77-90, (1986) · Zbl 0603.34069
[43] Kharitonov, V. L.; Zhabko, A. P., Robust stability of time-delay systems, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 39, 12, 2388-2397, (1994) · Zbl 0811.93042 · doi:10.1109/9.362855
[44] Olgac, N.; Sipahi, R., An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 47, 5, 793-797, (2002) · Zbl 1364.93576 · doi:10.1109/TAC.2002.1000275
[45] Freidovich, L.; Shiriaev, A.; Gordillo, F.; Gómez-Estern, F.; Aracil, J., Partial-energy-shaping control for orbital stabilization of high-frequency oscillations of the furuta pendulum, IEEE Transactions on Control Systems Technology, 17, 4, 853-858, (2009) · Zbl 1190.93082 · doi:10.1109/TCST.2008.2005734
[46] La Hera, P. X.; Freidovich, L. B.; Shiriaev, A. S.; Mettin, U., New approach for swinging up the furuta pendulum: theory and experiments, Mechatronics, 19, 8, 1240-1250, (2009) · doi:10.1016/j.mechatronics.2009.07.005
[47] Mori, S.; Nishihara, H.; Furuta, K., Control of unstable systems, International Journal of Control, 23, 5, 673-692, (1976) · doi:10.1080/00207177608922192
[48] Ferreira, A.; Bejarano, F. J.; Fridman, L. M., Robust control with exact uncertainties compensation: with or without chattering?, IEEE Transactions on Control Systems Technology, 19, 5, 969-975, (2011) · doi:10.1109/tcst.2010.2064168
[49] Aracil, J.; Acosta, J. Á.; Gordillon, F., A nonlinear hybrid controller for swinging-up and stabilizing the Furuta pendulum, Control Engineering Practice, 21, 8, 989-993, (2013) · doi:10.1016/j.conengprac.2013.04.001
[50] Levant, A., Robust exact differentiation via sliding mode technique, Automatica, 34, 3, 379-384, (1998) · Zbl 0915.93013 · doi:10.1016/S0005-1098(97)00209-4
[51] Biagiotti, L.; Melchiorri, C., Trajectory Planning for Automatic Machines and Robots, (2008), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-540-85629-0
[52] Tzypkin, Y., Stability of systems with delayed feedback, Automation and Remote Control, 7, 2-3, 107-129, (1946)
[53] Drozd, A.; Filer, Z., Application of the Mikhailov criterion to the study of stability of systems with delay, Journal of Computer and Systems Sociences International, 38, 3, 339-342, (1998) · Zbl 1077.34520
[54] Pekar, L.; Prokop, R.; Maturu, R., A stability test for control systems with delays based on the nyquist criterion, International Journal of Mathematical Models and Methods in Applied Sciences, 5, 7, 1213-1224, (2011)
[55] Michiels, W.; Niculescu, S.-I., Stability and stailization of time-delay systems advances in design and control, Society for Industrial and Applied Mathematics, (2007) · Zbl 1140.93026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.