×

A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. (English) Zbl 1043.74007

Summary: This study develops a gradient theory of single-crystal plasticity that accounts for geometrically necessary dislocations. The theory is based on classical crystalline kinematics; classical macroforces; microforces for each slip system consistent with a microforce balance; a mechanical version of the second law that includes, via the microforces, work performed during slip; a rate-independent constitutive theory that includes dependences on a tensorial measure of geometrically necessary dislocations. The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual slip systems. The field equations consist of the yield conditions coupled to the standard macroscopic force balance; these are supplemented by classical macroscopic boundary conditions in conjunction with nonstandard boundary conditions associated with slip. As an aid to solution, a weak (virtual power) formulation of the nonlocal yield conditions is derived. To make contact with classical dislocation theory, the microstresses are shown to represent counterparts of the Peach-Koehler force on a single dislocation.

MSC:

74E15 Crystalline structure
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74A60 Micromechanical theories
Full Text: DOI

References:

[1] Acharya, A.; Beaudoin, A. J., Grain size effects in viscoplastic polycrystals at moderate strains, J. Mech. Phys. Solids, 48, 2213-2230 (2000) · Zbl 0958.74013
[2] Aifantis, E. C., On the microstructural origin of certain inelastic models, Trans. ASME, J. Eng. Mater. Technol., 106, 326-330 (1984)
[3] Aifantis, E. C., The physics of plastic deformation, Int. J. Plastic., 3, 211-247 (1987) · Zbl 0616.73106
[4] Arsenlis, A.; Parks, D. M., Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density, Acta Mater., 47, 1597-1611 (1999)
[5] Asaro, R. J., Micromechanics of crystals and polycrystals, Adv. Appl. Mech., 23, 1-115 (1983)
[6] Asaro, R. J., Crystal plasticity, J. Appl. Mech., 50, 921-934 (1983) · Zbl 0557.73033
[7] Asaro, R. J.; Needleman, A., Texture development and strain hardening in rate dependent polycrystals, Acta Metal., 33, 923-953 (1985)
[8] Asaro, R. J.; Rice, J. R., Strain localization in ductile single crystals, J. Mech. Phys. Solids, 25, 309-338 (1977) · Zbl 0375.73097
[9] Batra, R. C., The initiation and growth of, and the interaction among, adiabatic shear bands in simple and dipolar materials, Int. J. Plastic., 3, 74-89 (1987)
[10] Batra, R. C.; Kim, C.-H., Effect of material characteristic length on the initiation, growth and band width of adiabatic shear bands in dipolar materials, J. Phys., 49, C3/41, C3/46 (1988)
[11] Bittencourt, E., Needleman, A., van der Giessen, E., Gurtin, M.E., 2001. In preparation.; Bittencourt, E., Needleman, A., van der Giessen, E., Gurtin, M.E., 2001. In preparation.
[12] Cermelli, P., Gurtin, M.E., 2000. On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539-1568.; Cermelli, P., Gurtin, M.E., 2000. On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539-1568. · Zbl 0989.74013
[13] Cermelli, C., Gurtin, M.E., 2001. Geometrically necessary dislocations and viscoplastic single crystals and bicrystals undergoing small deformations. Forthcoming.; Cermelli, C., Gurtin, M.E., 2001. Geometrically necessary dislocations and viscoplastic single crystals and bicrystals undergoing small deformations. Forthcoming. · Zbl 1032.74533
[14] Cleveringa, H. H.M.; Van der Giessen, E.; Needleman, A., A discrete dislocation analysis of residual stresses in a composite material, Phys. Mag. A, 79, 893-920 (1999) · Zbl 0976.74048
[15] Fleck, N. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41, 1825-1857 (1993) · Zbl 0791.73029
[16] Fleck, N. A.; Hutchinson, J. W., Strain gradient plasticity, Adv. Appl. Mech., 33, 295-361 (1997) · Zbl 0894.73031
[17] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Metal., 42, 475-487 (1994)
[18] Fleck, N.A., Hutchinson, J.W., 2001. A reformulation of a class of strain gradient plasticity theories. Forthcoming.; Fleck, N.A., Hutchinson, J.W., 2001. A reformulation of a class of strain gradient plasticity theories. Forthcoming. · Zbl 1033.74006
[19] Gurtin, M.E., 2000. On the plasticity of single crystals: free energy, microforces, plastic strain gradients. J. Mech. Phys. Solids 48, 989-1036.; Gurtin, M.E., 2000. On the plasticity of single crystals: free energy, microforces, plastic strain gradients. J. Mech. Phys. Solids 48, 989-1036. · Zbl 0988.74021
[20] Hill, R.; Rice, J. R., Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401-413 (1972) · Zbl 0254.73031
[21] Kondo, K., On the geometrical and physical foundations of the theory of yielding, Proc. Jpn. Nat. Cong. Appl. Mech., 2, 41-47 (1952)
[22] Kondo, K., 1955. Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: K. Kondo (Ed.) RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Science by Means of Geometry 1, Gakuyusty Bunken Fukin-Kay, Tokyo.; Kondo, K., 1955. Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: K. Kondo (Ed.) RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Science by Means of Geometry 1, Gakuyusty Bunken Fukin-Kay, Tokyo. · Zbl 0068.14803
[23] Kröner, E., Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal., 4, 273-334 (1960) · Zbl 0090.17601
[24] Kuhlmann-Wilsdorf, D., Theory of plastic deformation: properties of low energy dislocation structures, Mater. Sci. Eng., 113A, 1-41 (1989)
[25] Kubin, L. P.; Canova, G.; Condat, M.; Devincre, B.; Pontikis, V.; Bréchet, Y., Dislocation microstructures and plastic flow: a 3D simulation, Solid State Phenomena, 23,24, 455-472 (1992)
[26] Lee, E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[27] Mandel, J., Generalisation de la theorie de la plasticite de W.T. Koiter, Int. J. Solids Struct., 1, 273-295 (1965)
[28] Maugin, G., Material Inhomogenieties in Elasticity. (1993), Chapman Hall: Chapman Hall London · Zbl 0797.73001
[29] Miller, W., Symmetry Groups and their Applications. (1972), Academic Press: Academic Press New York · Zbl 0306.22001
[30] Muhlhaus, H. B.; Aifantis, E. C., A variational principle for gradient plasticity, Int. J. Solids Struct., 28, 845-857 (1991) · Zbl 0749.73029
[31] Muhlhaus, H. B.; Aifantis, E. C., The influence of microstructure-induced gradients on the localization in viscoplastic materials, Acta Mech., 89, 217-231 (1991) · Zbl 0749.73033
[32] Naghdi, P. M.; Srinivasa, A. R., A dynamical theory of structured solids, Philos. Trans. R. Soc. London, 345A, 425-458 (1993) · Zbl 0807.73001
[33] Naghdi, P. M.; Srinivasa, A. R., Characterization of dislocations and their influence on plastic deformation single crystals, Int. J. Eng. Sci., 32, 1157-1182 (1994) · Zbl 0899.73456
[34] Nye, J. F., Some geometrical relations in dislocated solids, Acta Metal., 1, 153-162 (1953)
[35] Rice, J. R., Inelastic constitutive relations for solids: an internal-variable theory and its applications to metal plasticity, J. Mech. Phys. Solids, 19, 443-455 (1971) · Zbl 0235.73002
[36] Shizawa, K.; Zbib, H. M., A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals, Int. J. Plastic., 15, 899-938 (1999) · Zbl 0974.74014
[37] Sun, S.; Adams, B. L.; Shet, C. Q.; Saigal, S.; King, W., Mesoscale investigation of the deformation field of an aluminum bicrystal, Scr. Mater., 39, 501-508 (1998)
[38] Sun, S., Adams, B.L., King, W.E., 2000. Observations of lattice curvature near the interface of a deformed aluminum bicrystal. Philosophical Magazine A80, 9-25.; Sun, S., Adams, B.L., King, W.E., 2000. Observations of lattice curvature near the interface of a deformed aluminum bicrystal. Philosophical Magazine A80, 9-25.
[39] Taylor, G. I.; Elam, C. F., The distortion of an aluminum crystal during a tensile test, Proc. R. Soc. London, 102A, 643-667 (1923)
[40] Taylor, G. I.; Elam, C. F., The plastic extension and fracture of aluminum crystals, Proc. R. Soc. London, 108A, 28-51 (1925)
[41] Taylor, G. I., Plastic strain in metals, J. Inst. Metals, 62, 307-325 (1938)
[42] Taylor, G. I., Analysis of plastic strain in a cubic crystal., (Lessels, J. M., Stephen Timoshenko Anniversary Volume. (1938), Macmillan: Macmillan New York) · Zbl 0022.08604
[43] Teodosiu, C., 1970. A dynamic theory of dislocations and its application to the theory of the elasto-plastic continuum. In: Simmons, J.A., de Wit, R., Bollough R. (Eds.), Proceedings of the Conference on Fundamental Aspects of Dislocation Theory, 1969. Natl. Bur. Stand. Spec. Publ. 317/2, 837-876.; Teodosiu, C., 1970. A dynamic theory of dislocations and its application to the theory of the elasto-plastic continuum. In: Simmons, J.A., de Wit, R., Bollough R. (Eds.), Proceedings of the Conference on Fundamental Aspects of Dislocation Theory, 1969. Natl. Bur. Stand. Spec. Publ. 317/2, 837-876.
[44] Teodosiu, C., Elastic Models of Crystal Defects. (1982), Springer-Verlag: Springer-Verlag Berlin · Zbl 0373.73052
[45] Teodosiu, C.; Sidoroff, F., A physical theory of the finite elasto-viscoplastic behaviour of single crystals, Int. J. Eng. Sci., 14, 165-176 (1976) · Zbl 0329.73037
[46] Wright, T. W.; Batra, R. C., Adiabatic shear bands in simple and dipolar plastic materials., (Kawata, K., Proceedings of IUTAM Symposium on Macro- and Micro-Mechanics of High Velocity Deformation and Fracture. (1987), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0655.73042
[47] Zbib, H. M.; Aifantis, E. C., On the gradient-dependent theory of plasticity and shear banding, Acta Mech., 92, 209-225 (1992) · Zbl 0751.73022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.