×

Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. (English) Zbl 1370.94286

Summary: The sine signals are widely used in signal processing, communication technology, system performance analysis and system identification. Many periodic signals can be transformed into the sum of different harmonic sine signals by using the Fourier expansion. This paper studies the parameter estimation problem for the sine combination signals and periodic signals. In order to perform the online parameter estimation, the stochastic gradient algorithm is derived according to the gradient optimization principle. On this basis, the multi-innovation stochastic gradient parameter estimation method is presented by expanding the scalar innovation into the innovation vector for the aim of improving the estimation accuracy. Moreover, in order to enhance the stabilization of the parameter estimation method, the recursive least squares algorithm is derived by means of the trigonometric function expansion. Finally, some simulation examples are provided to show and compare the performance of the proposed approaches.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
93E24 Least squares and related methods for stochastic control systems

Software:

SCALCG
Full Text: DOI

References:

[1] N. Andrei, An adaptive conjugate gradient algorithm for large-scale unconstrained optimization. J. Comput. Appl. Math. 292, 83-91 (2016) · Zbl 1321.90124 · doi:10.1016/j.cam.2015.07.003
[2] D. Belega, D. Petri, Sine-wave parameter estimation by interpolated DFT method based on new cosine windows with high interference rejection capability. Digit. Signal Process. 33, 60-70 (2014) · doi:10.1016/j.dsp.2014.07.003
[3] D. Belega, D. Petri, Accuracy analysis of the sine-wave parameters estimation by means of the windowed three-parameter sine-fit algorithm. Digit. Signal Process. 50, 12-23 (2016) · doi:10.1016/j.dsp.2015.11.008
[4] X. Cao, D.Q. Zhu, S.X. Yang, Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater environments. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2015.2482501 · doi:10.1109/TNNLS.2015.2482501
[5] J. Chen, Y. Ren, G. Zeng, An improved multi-harmonic sine fitting algorithm based on Tabu search. Measurement 59, 258-267 (2015) · doi:10.1016/j.measurement.2014.09.035
[6] Z.Z. Chu, D.Q. Zhu, S.X. Yang, Observer-based adaptive neural network trajectory tracking control for remotely operated Vehicle. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS · doi:10.1109/TNNLS
[7] S. Deng, Z. Wan, A three-term conjugate gradient algorithm for large-scale unconstrained optimization problems. Appl. Num. Math. 92, 70-81 (2015) · Zbl 1321.65096 · doi:10.1016/j.apnum.2015.01.008
[8] F. Ding, System Identification-Performances Analysis for Identification Methods (Science Press, Beijing, 2014)
[9] F. Ding, X.M. Liu, Y. Gu, An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. J. Franklin Inst. 353(2), 398-408 (2016) · Zbl 1395.93530 · doi:10.1016/j.jfranklin.2015.10.025
[10] F. Ding, P.X. Liu, G.J. Liu, Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit. Signal Process. 20(3), 664-677 (2010) · doi:10.1016/j.dsp.2009.10.012
[11] F. Ding, X.M. Liu, M.M. Liu, The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Franklin Inst. 353(7), 1518-1526 (2016) · Zbl 1336.93144 · doi:10.1016/j.jfranklin.2016.02.013
[12] F. Ding, X.M. Liu, X.Y. Ma, Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 301, 135-143 (2016) · Zbl 1382.93032 · doi:10.1016/j.cam.2016.01.042
[13] F. Ding, X.H. Wang, Q.J. Chen, Y.S. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. 35(9), 3323-3338 (2016) · Zbl 1345.93169 · doi:10.1007/s00034-015-0190-6
[14] J. Guo, Y.L. Zhao, C.Y. Sun, Y. Yu, Recursive identification of FIR systems with binary-valued outputs and communication channels. Automatica 60, 165-172 (2015) · Zbl 1331.93209 · doi:10.1016/j.automatica.2015.06.030
[15] M. Jafari, M. Salimifard, M. Dehghani, Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. ISA Trans. 53(4), 1243-1252 (2014) · doi:10.1016/j.isatra.2013.12.034
[16] A. Janot, P. Vandanjon, M. Gautier, A revised Durbin-Wu-Hausman test for industrial robot identification. Control Eng. Pract. 48, 52-62 (2016) · doi:10.1016/j.conengprac.2015.12.017
[17] Y. Ji, X.M. Liu, F. Ding, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1-9 (2015) · Zbl 1331.34108 · doi:10.1007/s11071-014-1640-6
[18] Y. Ji, X.M. Liu, Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499-1517 (2015) · Zbl 1341.93003 · doi:10.1007/s00034-014-9916-0
[19] X. Li, F. Ding, Signal modeling using the gradient search. Appl. Math. Lett. 26(8), 807-813 (2013) · Zbl 1308.94036 · doi:10.1016/j.aml.2013.02.012
[20] H. Li, Y. Shi, W. Yan, On neighbor information utilization in distributed receding horizon control for consensus-seeking. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2015.2459719 · doi:10.1109/TCYB.2015.2459719
[21] H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed \[\gamma\] γ-gain stability. Automatica 68, 148-154 (2016) · Zbl 1334.93010 · doi:10.1016/j.automatica.2016.01.057
[22] J. Li, Y.J. Zheng, Z.P. Lin, Recursive identification of time-varying systems: self-tuning and matrix RLS algorithms. Syst. Control Lett. 66, 104-110 (2014) · Zbl 1288.93088 · doi:10.1016/j.sysconle.2014.01.004
[23] Y.W. Mao, F. Ding, A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems. Digit. Signal Process. 46, 215-225 (2015) · doi:10.1016/j.dsp.2015.07.002
[24] I. Necoara, V. Nedelcu, On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems. Automatica 55, 209-216 (2015) · Zbl 1378.90065 · doi:10.1016/j.automatica.2015.02.038
[25] J. Pan, X.H. Yang, H.F. Cai, B.X. Mu, Image noise smoothing using a modified Kalman filter. Neurocomputing 173, 1625-1629 (2016) · doi:10.1016/j.neucom.2015.09.034
[26] J. Vörös, Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities. IEEE Trans. Autom. Control 44(11), 2145-2149 (1999) · Zbl 1136.93446 · doi:10.1109/9.802933
[27] D.Q. Wang, Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13-19 (2016) · Zbl 1336.93155 · doi:10.1016/j.aml.2015.12.018
[28] D.Q. Wang, F. Ding, Parameter estimation algorithms for multivariable Hammerstein CARMA systems. Inf. Sci. 355-356(10), 237-248 (2016) · Zbl 1458.93130 · doi:10.1016/j.ins.2016.03.037
[29] Y.J. Wang, F. Ding, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 71, 308-313 (2016) · Zbl 1343.93087 · doi:10.1016/j.automatica.2016.05.024
[30] Y.J. Wang, F. Ding, The filtering based iterative identification for multivariable systems. IET Control Theory Appl. 10(8), 894-902 (2016) · doi:10.1049/iet-cta.2015.1195
[31] Y.J. Wang, F. Ding, The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique. Signal Process. 128, 212-221 (2016) · doi:10.1016/j.sigpro.2016.03.027
[32] Y.J. Wang, F. Ding, Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering. Nonlinear Dyn. 84(2), 1045-1053 (2016) · Zbl 1354.93158 · doi:10.1007/s11071-015-2548-5
[33] T.Z. Wang, J. Qi, H. Xu et al., Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter. ISA Trans. 60, 156-163 (2016) · doi:10.1016/j.isatra.2015.11.018
[34] T.Z. Wang, H. Wu, M.Q. Ni et al., An adaptive confidence limit for periodic non-steady conditions fault detection. Mech. Syst. Signal Process. 72-73, 328-345 (2016) · doi:10.1016/j.ymssp.2015.10.015
[35] D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Franklin Inst. 352(11), 5292-5307 (2015) · Zbl 1395.93287
[36] L. Xu, A proportional differential control method for a time-delay system using the Taylor expansion approximation. Appl. Math. Comput. 236, 391-399 (2014) · Zbl 1334.93125
[37] L. Xu, The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660-667 (2016) · doi:10.1016/j.sigpro.2015.10.009
[38] L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33-43 (2015) · Zbl 1314.93062 · doi:10.1016/j.cam.2015.03.057
[39] L. Xu, L. Chen, W.L. Xiong, Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dyn. 79(3), 2155-2163 (2015) · doi:10.1007/s11071-014-1801-7
[40] X.P. Xu, F. Wang, G.J. Liu, Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm. IET Signal Process. 7(8), 766-773 (2013) · doi:10.1049/iet-spr.2013.0042
[41] Y. Zhang, Unbiased identification of a class of multi-input single-optput systems with correlated disturbances using bias compensation methods. Math. Comput. Model. 53(9-10), 1810-1819 (2011) · Zbl 1219.93141 · doi:10.1016/j.mcm.2010.12.059
[42] G.Q. Zhang, X.K. Zhang, H.S. Pang, Multi-innovation auto-constructed least squares identification for 4 DOF ship manoeuvring modelling with full-scale trial data. ISA Trans. 58, 186-195 (2015) · doi:10.1016/j.isatra.2015.04.004
[43] S.X. Zhao, F. Wang, H. Xu, J. Zhu, Multi-frequency identification method in signal processing. Digit. Signal Process. 19(4), 555-566 (2009) · doi:10.1016/j.dsp.2008.07.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.