×

Wormhole solutions in the presence of nonlinear Maxwell field. (English) Zbl 1425.83011

Summary: In generalizing the Maxwell field to nonlinear electrodynamics, we look for the magnetic solutions. We consider a suitable real metric with a lower bound on the radial coordinate and investigate the properties of the solutions. We find that in order to have a finite electromagnetic field near the lower bound, we should replace the Born-Infeld theory with another nonlinear electrodynamics theory. Also, we use the cut-and-paste method to construct wormhole structure. We generalize the static solutions to rotating spacetime and obtain conserved quantities.

MSC:

83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C50 Electromagnetic fields in general relativity and gravitational theory
78A25 Electromagnetic theory (general)

References:

[1] Morris, M. S.; Thorne, K. S., Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity, American Journal of Physics, 56, 5, 395-412 (1988) · Zbl 0957.83529 · doi:10.1119/1.15620
[2] Morris, M. S.; Thorne, K. S.; Yurtsever, U., Wormholes, time machines, and the weak energy condition, Physical Review Letters, 61, 13, 1446-1449 (1988) · doi:10.1103/PhysRevLett.61.1446
[3] Hochberg, D.; Visser, M., Dynamic wormholes, antitrapped surfaces, and energy conditions, Physical Review D, 58, 4 (1998) · doi:10.1103/PhysRevD.58.044021
[4] Hawking, S. W.; Ellis, G. F. R., The Large Scale Structure of Space-Time, xi+391 (1973), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0265.53054
[5] Visser, M., Lorentzian Wormholes: From Einstein to Hawking, xxvi+412 (1995), Woodbury, NY, USA: AIP Press, Woodbury, NY, USA
[6] Lobo, F. S. N., Exotic solutions in General Relativity: traversable wormholes and warp drive spacetimes, Classical and Quantum Gravity Research, 1-78 (2008), Nova Science Publishers
[7] Barceló, C.; Visser, M., Twilight for the energy conditions?, International Journal of Modern Physics D, 11, 10, 1553-1560 (2002) · Zbl 1062.83509 · doi:10.1142/S0218271802002888
[8] Visser, M., Gravitational vacuum polarization. I. Energy conditions in the Hartle-Hawking vacuum, Physical Review D, 54, 8, 5103-5115 (1996) · doi:10.1103/PhysRevD.54.5103
[9] Visser, M., Gravitational vacuum polarization. II. Energy conditions in the Boulware vacuum, Physical Review D, 54, 8, 5116-5122 (1996) · doi:10.1103/PhysRevD.54.5116
[10] Visser, M., Gravitational vacuum polarization. III. Energy conditions in the \((1 + 1)\)-dimensional Schwarzschild spacetime, Physical Review D, 54, 8, 5123-5128 (1996) · doi:10.1103/PhysRevD.54.5123
[11] Visser, M., Gravitational vacuum polarization. IV. Energy conditions in the Unruh vacuum, Physical Review D, 56, 2, 936-952 (1997) · doi:10.1103/PhysRevD.56.936
[12] Visser, M., Gravitational vacuum polarization
[13] Tonry, J. L.; Schmidt, B. P.; Barris, B., Cosmological Results from High-z Supernovae, The Astrophysical Journal, 594, article 1 (2003) · doi:10.1086/376865
[14] Alam, U.; Sahni, V.; Saini, T. D.; Starobinsky, A. A., Is there supernova evidence for dark energy metamorphosis?, Monthly Notices of the Royal Astronomical Society, 354, 1, 275-291 (2004) · doi:10.1111/j.1365-2966.2004.08189.x
[15] Choudhury, T. R.; Padmanabhan, T., Cosmological parameters from supernova observations: a critical comparison of three data sets, Astronomy and Astrophysics, 429, 3, 807-818 (2005) · Zbl 1065.85513 · doi:10.1051/0004-6361:20041168
[16] Alcaniz, J. S., Testing dark energy beyond the cosmological constant barrier, Physical Review D, 69, 8 (2004) · doi:10.1103/PhysRevD.69.083521
[17] Mosquera Cuesta, H. J.; Salim, J. M.; Novello, M., Cosmological redshift and nonlinear electrodynamics propagation of photons from distant sources
[18] Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L., Inflation-produced magnetic fields in nonlinear electrodynamics, Physical Review D, 77, 4 (2008) · doi:10.1103/PhysRevD.77.043001
[19] Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L., Inflation-produced magnetic fields in and models, Physical Review D, 77 (2008) · doi:10.1103/PhysRevD.77.123002
[20] Mosquera Cuesta, H. J.; Salim, J. M., Non-linear electrodynamics and the gravitational redshift of highly magnetized neutron stars, Monthly Notices of the Royal Astronomical Society, 354, 4, L55-L59 (2004) · doi:10.1111/j.1365-2966.2004.08375.x
[21] Cuesta, H. J. M.; Salim, J. M., Nonlinear electrodynamics and the surface redshift of pulsars, Astrophysical Journal Letters, 608, 2, 925-929 (2004) · doi:10.1086/378686
[22] Mosquera Cuesta, H. J.; Salim, J. M.; De Freitas Pacheco, J. A., Einstein’s gravitational lensing and nonlinear electrodynamics, International Journal of Modern Physics A, 21, 1, 43-55 (2006) · Zbl 1102.83001 · doi:10.1142/S0217751X06025055
[23] Mbelek, J. P.; Cuesta, H. J. M.; Novello, M.; Salim, J. M., Nonlinear electrodynamics and the Pioneer 10/11 spacecraft anomaly, Europhysics Letters, 77, 1 (2007) · doi:10.1209/0295-5075/77/19001
[24] Riazi, N.; Niad, H.; Hendi, S. H., Black holes and solitons of the nonlinear isovector model, International Journal of Modern Physics A, 21, 21, 4343-4354 (2006) · Zbl 1149.83322 · doi:10.1142/S0217751X06030989
[25] Mbelek, J. P.; Mosquera Cuesta, H. J., Non-linear electrodynamics and the variation of the fine structure constant, Monthly Notices of the Royal Astronomical Society, 389, 1, 199-204 (2008) · doi:10.1111/j.1365-2966.2008.13503.x
[26] Marklund, M.; Shukla, P. K., Nonlinear collective effects in photon-photon and photon-plasma interactions, Reviews of Modern Physics, 78, 591 (2006) · doi:10.1103/RevModPhys.78.591
[27] Lundin, J.; Brodin, G.; Marklund, M., Short wavelength quantum electrodynamical correction to cold plasma-wave propagation, Physics of Plasmas, 13, 10 (2006) · doi:10.1063/1.2356315
[28] Lundstrom, E.; Brodin, G.; Lundin, J.; Marklund, M.; Bingham, R.; Collier, J.; Mendonça, J. T.; Norreys, P., Using high-power lasers for detection of elastic photon-photon scattering, Physical Review Letters, 96 (2006) · doi:10.1103/PhysRevLett.96.083602
[29] Born, M.; Infeld, L., Foundations of the new field theory, Proceedings of the Royal Society of London, 144, 425 (1934) · Zbl 0008.42203 · doi:10.1098/rspa.1934.0059
[30] Hoffmann, B., Gravitational and electromagnetic mass in the born-infeld electrodynamics, Physical Review, 47, 877 (1935) · JFM 61.1566.01 · doi:10.1103/PhysRev.47.877
[31] Demiański, M., Static electromagnetic geon, Foundations of Physics, 16, 2, 187-190 (1986) · doi:10.1007/BF01889380
[32] de Oliveira, H. P., Non-linear charged black holes, Classical and Quantum Gravity, 11, 6, 1469 (1994) · doi:10.1088/0264-9381/11/6/012
[33] Gibbons, G. W.; Rasheed, D. A., Electric-magnetic duality rotations in non-linear electrodynamics, Nuclear Physics B, 454, 1-2, 185-206 (1995) · Zbl 0925.83031 · doi:10.1016/0550-3213(95)00409-L
[34] Cai, R.-G.; Pang, D.-W.; Wang, A., Born-Infeld black holes in (A)dS spaces, Physical Review D, 70, 12 (2004) · doi:10.1103/PhysRevD.70.124034
[35] Kumar Dey, T., Born-Infeld black holes in the presence of a cosmological constant, Physics Letters B, 595, 1-4, 484-490 (2004) · Zbl 1247.83102 · doi:10.1016/j.physletb.2004.06.047
[36] Dehghani, M. H.; Sedehi, H. R. R., Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity, Physical Review D, 74, 12 (2006) · doi:10.1103/PhysRevD.74.124018
[37] Dehghani, M. H.; Hendi, S. H., Thermodynamics of rotating black branes in Gauss-Bonnet-Born-Infeld gravity, International Journal of Modern Physics D, 16, 11, 1829-1843 (2007) · Zbl 1200.83096 · doi:10.1142/S0218271807011127
[38] Dehghani, M. H.; Hendi, S. H.; Sheykhi, A.; Rastegar Sedehi, H., Thermodynamics of rotating black branes in Einstein-Born-Infeld-dilaton gravity, Journal of Cosmology and Astroparticle Physics, 2, article 020 (2007) · doi:10.1088/1475-7516/2007/02/020
[39] Dehghani, M. H.; Alinejadi, N.; Hendi, S. H., Topological black holes in Lovelock-Born-Infeld gravity, Physical Review D, 77, 10 (2008) · doi:10.1103/PhysRevD.77.104025
[40] Hendi, S. H., Rotating black branes in Brans-Dicke-Born-Infeld theory, Journal of Mathematical Physics, 49, 8 (2008) · Zbl 1152.81471 · doi:10.1063/1.2968342
[41] Hassaïne, M.; Martínez, C., Higher-dimensional black holes with a conformally invariant Maxwell source, Physical Review D, 75, 2 (2007) · doi:10.1103/PhysRevD.75.027502
[42] Hassaïne, M.; Martínez, C., Higher-dimensional charged black hole solutions with a nonlinear electrodynamics source, Classical and Quantum Gravity, 25, 19 (2008) · Zbl 1151.83356 · doi:10.1088/0264-9381/25/19/195023
[43] Hendi, S. H.; Rastegar-Sedehi, H. R., Ricci flat rotating black branes with a conformally invariant Maxwell source, General Relativity and Gravitation, 41, 6, 1355-1366 (2009) · Zbl 1177.83045 · doi:10.1007/s10714-008-0711-8
[44] Hendi, S. H., Topological black holes in Gauss-Bonnet gravity with conformally invariant Maxwell source, Physics Letters B, 677, 3-4, 123-132 (2009) · doi:10.1016/j.physletb.2009.03.085
[45] Maeda, H.; Hassaine, M.; Martinez, C., Lovelock black holes with a nonlinear Maxwell field, Physical Review D, 79 (2009) · doi:10.1103/PhysRevD.79.044012
[46] Hendi, S. H.; Panah, B. E., Thermodynamics of rotating black branes in Gauss-Bonnet-nonlinear Maxwell gravity, Physics Letters B, 684, 2-3, 77-84 (2010) · doi:10.1016/j.physletb.2010.01.026
[47] Hendi, S. H., The relation between F (R) gravity and Einstein-conformally invariant Maxwell source, Physics Letters B, 690, 3, 220-223 (2010) · doi:10.1016/j.physletb.2010.05.035
[48] Hendi, S. H., Slowly rotating black holes in einstein-generalized maxwell gravity, Progress of Theoretical Physics, 124, 3, 493-502 (2010) · Zbl 1206.83099 · doi:10.1143/PTP.124.493
[49] Hendi, S. H., Rotating black branes in the presence of nonlinear electromagnetic field, European Physical Journal C, 69, 1, 281-288 (2010) · doi:10.1140/epjc/s10052-010-1359-6
[50] Hendi, S. H., Rotating black string with nonlinear source, Physical Review D, 82 (2010) · doi:10.1103/PhysRevD.82.064040
[51] Hendi, S. H.; Kordestani, S.; Doosti Motlagh, S. N., The effects of nonlinear Maxwell source on the magnetic solutions in Einstein-Gauss-Bonnet gravity, Progress of Theoretical Physics, 124, 6, 1067-1082 (2010) · Zbl 1213.83077 · doi:10.1143/PTP.124.1067
[52] Hendi, S. H., Charged BTZ-like black holes in higher dimensions, The European Physical Journal C, 71, 1551 (2011) · doi:10.1140/epjc/s10052-011-1551-3
[53] Hendi, S. H., Asymptotic charged BTZ black hole solutions, Journal of High Energy Physics, 3, article 065 (2012) · Zbl 1309.83067
[54] Hendi, S. H., Asymptotic Reissner-Nordström black holes, Annals of Physics, 333, 282-289 (2013) · Zbl 1284.83060 · doi:10.1016/j.aop.2013.03.008
[55] Hendi, S. H.; Sheykhi, A., Charged rotating black string in gravitating nonlinear electromagnetic fields, Physical Review D, 88 (2013) · doi:10.1103/PhysRevD.88.044044
[56] Delphenich, D. H., Nonlinear electrodynamics and QED · Zbl 1206.78013
[57] Delphenich, D. H., Nonlinear optical analogies in quantum electrodynamics
[58] Richarte, M. G., Cylindrical wormholes in DGP gravity, Physical Review D, 87 (2013) · doi:10.1103/PhysRevD.87.067503
[59] Kar, S.; Sahdev, D., Evolving Lorentzian wormholes, Physical Review D, 53, 2, 722-730 (1996) · doi:10.1103/PhysRevD.53.722
[60] Cataldo, M.; Salgado, P.; Minning, P., Self-dual Lorentzian wormholes in \(n\)-dimensional Einstein gravity, Physical Review D, 66, 12 (2002) · doi:10.1103/PhysRevD.66.124008
[61] DeBenedictis, A.; Das, A., Higher dimensional wormhole geometries with compact dimensions, Nuclear Physics B, 653, 1-2, 279-304 (2003) · Zbl 1010.83010 · doi:10.1016/S0550-3213(03)00051-8
[62] Bhawal, B.; Kar, S., Lorentzian wormholes in Einstein-Gauss-Bonnet theory, Physical Review D, 46, 6, 2464-2468 (1992) · doi:10.1103/PhysRevD.46.2464
[63] Dehghani, M. H.; Hendi, S. H., Wormhole solutions in Gauss-Bonnet-Born-Infeld gravity, General Relativity and Gravitation, 41, 8, 1853-1863 (2009) · Zbl 1177.83106 · doi:10.1007/s10714-009-0756-3
[64] Hendi, S. H., The effects of conformally invariant Maxwell source on the magnetic wormhole solutions in Gauss-Bonnet gravity, Canadian Journal of Physics, 89, 281-287 (2011) · doi:10.1139/P11-009
[65] Ghoroku, K.; Soma, T., Lorentzian wormholes in higher-derivative gravity and the weak energy condition, Physical Review D, 46, 4, 1507-1516 (1992) · doi:10.1103/PhysRevD.46.1507
[66] Hendi, S. H., Magnetic wormhole solutions in Einstein-Gauss-Bonnet gravity with power Maxwell invariant source, Journal of Mathematical Physics, 52, 4 (2011) · Zbl 1316.83025 · doi:10.1063/1.3567409
[67] Visser, M., Lorentzian Wormholes, xxvi+412 (1996), Woodbury, NY, USA: AIP Press, Woodbury, NY, USA
[68] Lobo, F. S. N.; Crawford, P., Linearized stability analysis of thin-shell wormholes with a cosmological constant, Classical and Quantum Gravity, 21, 2, 391-404 (2004) · Zbl 1085.83003 · doi:10.1088/0264-9381/21/2/004
[69] Eiroa, E. F.; Romero, G. E., Linearized stability of charged thin-shell wormholes, General Relativity and Gravitation, 36, 4, 651-659 (2004) · Zbl 1048.83004 · doi:10.1023/B:GERG.0000016916.79221.24
[70] Lemos, J. P. S.; Lobo, F. S. N., Plane symmetric traversable wormholes in an anti-de Sitter background, Physical Review D, 69, 10 (2004) · Zbl 1405.83052 · doi:10.1103/PhysRevD.69.104007
[71] Richarte, M. G.; Simeone, C., Traversable wormholes in a string cloud, International Journal of Modern Physics D, 17, 8, 1179-1196 (2008) · Zbl 1158.83321 · doi:10.1142/S0218271808012759
[72] Richarte, M. G.; Simeone, C., Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity, Physical Review D, 76 (2007) · doi:10.1103/PhysRevD.77.089903
[73] Richarte, M. G.; Simeone, C., Wormholes in Einstein-Born-Infeld theory, Physical Review D, 80 (2009) · doi:10.1103/PhysRevD.81.109903
[74] Eiroa, E. F.; Richarte, M. G.; Simeone, C., Thin-shell wormholes in Brans-Dicke gravity, Physics Letters A, 373, 1, 1-4 (2008) · Zbl 1227.83021 · doi:10.1016/j.physleta.2008.10.065
[75] Dias, G. A. S.; Lemos, J. P. S., Thin-shell wormholes in \(d\)-dimensional general relativity: solutions, properties, and stability, Physical Review D, 82 (2010) · doi:10.1103/PhysRevD.82.084023
[76] Mazharimousavi, S. H.; Halilsoy, M.; Amirabi, Z., Stability of thin-shell wormholes supported by normal matter in einstein-maxwell-gauss-bonnet gravity, Physical Review D, 81, 10 (2010) · doi:10.1103/PhysRevD.81.104002
[77] Dehghani, M. H.; Mehdizadeh, M. R., Lovelock thin-shell wormholes, Physical Review D, 85, 2 (2012) · doi:10.1103/PhysRevD.85.024024
[78] Kanti, P.; Kleihaus, B.; Kunz, J., Stable Lorentzian wormholes in dilatonic Einstein-Gauss-Bonnet theory, Physical Review D, 85, 4 (2012) · doi:10.1103/PhysRevD.85.044007
[79] Bochicchio, I.; Laserra, E., Intra—Galactic thin shell wormhole and its stability · Zbl 1274.83021
[80] Rahaman, F.; Banerjee, A.; Radinschi, I., A new class of stable (2+1) dimensional thin shell Wormhole, International Journal of Theoretical Physics, 51, 6, 1680-1691 (2012) · Zbl 1381.83090 · doi:10.1007/s10773-011-1045-y
[81] Usmani, A. A.; Hasan, Z.; Rahaman, F.; Rakib, S. A.; Ray, S.; Kuhfittig, P. K. F., Thin-shell wormholes from charged black holes in generalized dilaton-axion gravity, General Relativity and Gravitation, 42, 12, 2901-2912 (2010) · Zbl 1204.83078 · doi:10.1007/s10714-010-1044-y
[82] Lemos, J. P. S.; Lobo, F. S. N., Plane symmetric thin-shell wormholes: solutions and stability, Physical Review D, 78, 4 (2008) · doi:10.1103/PhysRevD.78.044030
[83] Bronnikov, K. A.; Starobinsky, A. A., Once again on thin-shell wormholes in scalar-tensor gravity, Modern Physics Letters A, 24, 1559 (2009) · Zbl 1168.83309 · doi:10.1142/S0217732309030928
[84] Hendi, S. H., Magnetic branes supported by a nonlinear electromagnetic field, Classical and Quantum Gravity, 26, 22 (2009) · Zbl 1181.83199 · doi:10.1088/0264-9381/26/22/225014
[85] Visser, M., Traversable wormholes: some simple examples, Physical Review D, 39, 10, 3182-3184 (1989) · doi:10.1103/PhysRevD.39.3182
[86] Rahaman, F.; Chakraborty, S.; Kalam, M., Thin-shell wormhole in the heterotic string theory, International Journal of Modern Physics D, 16, 10, 1669-1681 (2007) · Zbl 1200.81131 · doi:10.1142/S0218271807010924
[87] Kuhfittig, P. K. F., Theoretical construction of stable traversable wormholes, Central European Journal of Physics, 8, 364-368 (2010) · doi:10.2478/s11534-009-0099-4
[88] Kashargin, P. E.; Sushkov, S. V., Rotating thin-shell wormhole from glued Kerr spacetimes, Gravitation and Cosmology, 17, 2, 119-125 (2011) · Zbl 1232.83026 · doi:10.1134/S0202289311020149
[89] Sharif, M.; Azam, M., Stability analysis of thin-shell wormholes from charged black string, Journal of Cosmology and Astroparticle Physics, 2013, 04, article 023 (2013) · doi:10.1088/1475-7516/2013/04/023
[90] Sharif, M.; Azam, M., Spherical thin-shell wormholes and modified Chaplygin gas, Journal of Cosmology and Astroparticle Physics, 2013, 05, article 025 (2013) · Zbl 1298.83027 · doi:10.1088/1475-7516/2013/05/025
[91] Lobo, F. S. N.; Crawford, P., Stability analysis of dynamic thin shells, Classical and Quantum Gravity, 22, 4869-4886 (2005) · Zbl 1078.83004 · doi:10.1088/0264-9381/22/22/012
[92] Stachel, J., Globally stationary but locally static space-times: a gravitational analog of the Aharonov-Bohm effect, Physical Review D, 26, 6, 1281-1290 (1982) · doi:10.1103/PhysRevD.26.1281
[93] Maldacena, J., The large \(N\) limit of superconformal field theories and supergravity, Advances in Theoretical and Mathematical Physics, 2, 2, 231-252 (1998) · Zbl 0914.53047
[94] Witten, E., Anti de Sitter space and holography, Advances in Theoretical and Mathematical Physics, 2, 2, 253-291 (1998) · Zbl 0914.53048
[95] Aharony, O.; Gubser, S. S.; Maldacena, J.; Ooguri, H.; Oz, Y., Large \(N\) field theories, string theory and gravity, Physics Reports, 323, 3-4, 183-386 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.