Skip to main content
Log in

Rotating thin-shell wormhole from glued Kerr spacetimes

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We construct a model of a rotating wormhole made by cutting and pasting two Kerr spacetimes. As a result, we obtain a rotating thin-shell wormhole with exotic matter at the throat. Two candidates for the exotic matter are considered: (i) a perfect fluid; (ii) an anisotropic fluid. We show that a perfect fluid is unable to support a rotating thin-shall wormhole. On the contrary, the anisotropic fluid with the negative energy density can be a source for such a geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Visser, Lorentzian Wormholes: from Einstein to Hawking (American Institute of Physics, Woodbury, 1995).

    Google Scholar 

  2. A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).

    Article  ADS  MATH  Google Scholar 

  3. C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997); Phys. Rev. D 58, 044021 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  6. S. V. Sushkov, Phys. Rev. D 71, 043520 (2005).

    Article  ADS  Google Scholar 

  7. F. S. N. Lobo, Phys. Rev. D 71, 084011 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  8. F. S. N. Lobo, Phys. Rev. D 73, 064028 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Das and Sayan Kar, Class. Quantum Grav. 22, 3045 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Today the list of references concerning various aspects of wormhole physics numbers hundreds of items. To find more references dated till 1995 the reader can be referred to Visser’s book M. Visser, Lorentzian Wormholes: from Einstein to Hawking (American Institute of Physics, Woodbury, 1995)[1]. A more complete list of up-to-date publications as well as an introduction into a modern state of affairs in wormhole physics and related fields can be found in [11].

    Google Scholar 

  11. F. S. N. Lobo, arXiv: 0710.4474.

  12. E. Teo, Phys. Rev. D 58, 024014 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  13. S. E. Perez Bergliaffa and K. E. Hibberd, gr-qc/0006041.

  14. P. K. F. Kuhfittig, Phys. Rev. D 67, 064015 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  15. S.-W. Kim, Nuovo Cim. 120B, 1235 (2005).

    ADS  Google Scholar 

  16. V. M. Khatsymovsky, Phys. Lett. B 429, 254 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  17. P. E. Kashargin and S. V. Sushkov, Grav. Cosmol. 14, 80 (2008).

    ADS  MATH  Google Scholar 

  18. P. E. Kashargin and S. V. Sushkov, Phys. Rev. D 78, 064071 (2008).

    Article  ADS  Google Scholar 

  19. T. Matos and D. Nunez, Class. Quant. Grav. 23, 4485 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. T. Matos, Class of Einstein-Maxwell Phantom Fields: Rotating and Magnetised Wormholes, arXiv: 0902.4439.

  21. M. Visser, Phys. Rev. D 39, 3182 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Visser, Nucl. Phys. B 328, 203 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  23. E. F. Eiroa and G. E. Romero, Gen. Rel.Grav. 36, 651 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. F. S. N. Lobo and P. Crawford, Class. Quant. Grav. 21, 391 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. E. F. Eiroa and C. Simeone, Phys. Rev. D 70, 044008 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. P. S. Lemos and F. S. N. Lobo, Phys. Rev. D 78, 044030 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  27. E. F. Eiroa and C. Simeone, Phys. Rev. D 71, 127501 (2005).

    Article  ADS  Google Scholar 

  28. M. Thibeault, C. Simeone, and E. F. Eiroa, Gen. Rel. Grav. 38, 1593 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M. Richarte and C. Simeone, Phys. Rev. D 76, 087502 (2007); Erratum: ibid. 77, 089903 (2008).

    Article  ADS  Google Scholar 

  30. E. F. Eiroa, M. G. Richarte, and C. Simeone, Phys. Lett. A 373, 1 (2008); Erratum: ibid. A 373, 2399 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. E. F. Eiroa, Phys. Rev. D 80, 044033 (2009).

    Article  ADS  Google Scholar 

  32. C. Bejarano, E. F. Eiroa, and C. Simeone, Phys. Rev. D 75, 027501 (2007).

    Article  ADS  Google Scholar 

  33. F. Rahaman, M. Kalam, and K. A. Rahman, Acta Phys. Polon. B 40, 1575 (2009).

    ADS  Google Scholar 

  34. K.A. Bronnikov and A. A. Starobinsky, Mod. Phys. Lett. A 24, 1559 (2009).

    Article  ADS  MATH  Google Scholar 

  35. R. M. Wald, General Relativity (Univ. of Chicago Press, Chicago, 1984).

    MATH  Google Scholar 

  36. N. Sen, Ann. Phys. (Leipzig) 73, 365 (1924); K. Lanczos, ibid. 74, 518 (1924); G. Darmois, Mémorial des Sciences Mathématiques, Fascicule XXV, Chap. V (Gauthier-Villars, Paris, 1927); W. Israel, Nuovo Cim. 44B, 1 (1966); ibid. 48B, 463(E) (1967).

    ADS  MATH  Google Scholar 

  37. E. Poisson and M. Visser, Phys. Rev. D 52, 7318 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Ishak and K. Lake, Phys. Rev. D 65, 044011 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  39. E. F. Eiroa and G. E. Romero, Gen. Rel.Grav. 36, 651 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. F. S. N. Lobo and P. Crawford, Class. Quantum Grav. 21, 391 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. E. F. Eiroa and C. Simeone, Phys. Rev. D 76, 024021 (2007).

    Article  ADS  Google Scholar 

  42. E. F. Eiroa, Phys. Rev. D 78, 024018 (2008).

    Article  ADS  Google Scholar 

  43. S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, Phys. Rev. D 81, 104002 (2010).

    Article  ADS  Google Scholar 

  44. P. K. F. Kuhfittig, Acta Phys. Polon. B 41, 2017 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sushkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashargin, P.E., Sushkov, S.V. Rotating thin-shell wormhole from glued Kerr spacetimes. Gravit. Cosmol. 17, 119–125 (2011). https://doi.org/10.1134/S0202289311020149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289311020149

Keywords

Navigation