×

A comparison of strain gradient theories with applications to the functionally graded circular micro-plate. (English) Zbl 1480.74206

Summary: The strain gradient theory of S. Zhou et al. [“A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials”, Int. J. Solids Struct. 80, 28–37 (2016; doi:10.1016/j.ijsolstr.2015.10.018)] is re-expressed in a more direct form and the differences with other strain gradient theories are investigated by an application on static and dynamic analyses of FGM circular micro-plate. To facilitate the modeling, the strain gradient theory of Zhou et al. [loc. cit.] is re-expressed in cylindrical coordinates, and then the governing equation, boundary conditions and initial condition for circular plate are derived with the help of the Hamilton’s principle. The present model can degenerate into other models based on the strain gradient theory of D. C. C. Lam et al. [J. Mech. Phys. Solids 51, No. 8, 1477–1508 (2003; Zbl 1077.74517)], the couple stress theory, the modified couple stress theory or even the classical theory, respectively. The static bending and free vibration problems of a simply supported circular plate are solved. The results indicate that the consideration of strain gradients results in an increase in plate stiffness, and leads to a reduction of deflection and an increase in natural frequency. Compared with the reduced models, the present model can predict a stronger size effect since the contribution from all strain gradient components is considered, and the differences of results from all these models are diminishing when the plate thickness is far greater than the material length-sale parameter.

MSC:

74K20 Plates

Citations:

Zbl 1077.74517
Full Text: DOI

References:

[1] Liu, D.; He, Y.; Tang, X.; Ding, H.; Hu, P.; Cao, P., Size effects in the torsion of microscale copper wires: experiment and analysis, Scr. Mater., 66, 1, 406-409 (2012)
[2] Tang, C.; Alici, G., Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers:Ⅰ. Experimental determination of length-scale factors, J. Phys. D: Appl. Phys., 44, Article 335501 pp. (2011)
[3] Tang, C.; Alici, G., Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: Ⅱ. Experimental verification of deflection models using atomic fore microscopy, J. Phys. D: Appl. Phys., 44, 33, Article 335502 pp. (2011)
[4] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 1477-1508 (2003) · Zbl 1077.74517
[5] Toupin, R. A., Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., 17, 2, 85-112 (1964) · Zbl 0131.22001
[6] Koiter, W. T., Couple stresses in the theory of elasticity, I and II, Philos. Trans. R. Soc. Lond. B, 67, 17-44 (1969) · Zbl 0124.17405
[7] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415-448 (1962) · Zbl 0112.38906
[8] Mindlin, R. D.; Eshel, N. N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 1, 109-124 (1968) · Zbl 0166.20601
[9] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302
[10] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743 (2002) · Zbl 1037.74006
[11] Hadjesfandiari, A. R.; Dargush, G. F., Couple stress theory for solids, Int. J. Solids Struct., 48, 2496-2510 (2011)
[12] Zhou, S. J.; Li, A. Q.; Wang, B. L., A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials, Int. J. Solids Struct., 80, 28-37 (2016)
[13] Aifantis, E. C., On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30, 1297-1299 (1992) · Zbl 0769.73058
[14] Fleck, N. A.; Hutchinson, J. W., A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245-2271 (2001) · Zbl 1033.74006
[15] Li, A. Q.; Zhou, S. J.; Zhou, S. S.; Wang, B. L., A size-dependent bilayered microbeam model based on strain gradient elasticity theory, Compos. Struct., 108, 1, 259-266 (2014)
[16] Li, A. Q.; Zhou, S. J.; Zhou, S. S.; Wang, B. L., A size-dependent model for bi-layered Kirchhoff micro-plate based on strain gradient elasticity theory, Compos. Struct., 113, 1, 272-280 (2014)
[17] Wang, B. L.; Shen, S. J.; Zhao, J. F.; Chen, X., A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory, Eur. J. Mech. A: Solid., 30, 517-524 (2011) · Zbl 1278.74103
[18] Kong, S. L.; Zhou, S. J.; Nie, Z. F.; Wang, K., Static and dynamic analysis of micro beams based on strain gradient elasticity theory, Int. J. Eng. Sci., 47, 487-498 (2009) · Zbl 1213.74190
[19] Hasanyan, D. J.; Batra, R. C.; Harutyunyan, R. C., Pull-in instabilities in functionally graded microthermoelectromechanical systems, J. Therm. Stress., 31, 1006-1021 (2008)
[20] Mahmud, A. S.; Liu, Y.; Nam, T. H., Gradient anneal of functionally graded NiTi, Smart Mater. Struct., 17, Article 015031-1-5 (2008)
[21] Witvrouw, A.; Mehta, A., The use of functionally graded poly-SiGe layers for MEMS applications, Mater. Sci. Forum, 492-493, 255-260 (2005)
[22] Akgöz, B.; Civalek, Ö., Buckling analysis of functionally graded microbeams based on the strain gradient theory, Acta Mech., 224, 9, 2185-2201 (2013) · Zbl 1398.74117
[23] Kahrobaiyan, M. H.; Rahaerfard, M.; Tajalli, S. A.; Ahmadian, M. T., A strain gradient functionally graded Euler-Bernoulli beam formulation, Int. J. Eng. Sci., 52, 65-76 (2012) · Zbl 1423.74488
[24] Asghari, M.; Ahmadian, M. T.; Kahrobaiyan, M. H.; Rahaerfard, M., On the size-dependent behavior of functionally graded micro-beams, Mater. Des., 31, 5, 2324-2329 (2010)
[25] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Sahmani, S., Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Compos. Struct., 100, 385-397 (2013)
[26] Simsek, M.; Kocaturk, T.; Akbas, S. D., Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory, Compos. Struct., 95, 740-747 (2013)
[27] Ke, L. L.; Wang, Y. S., Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Compos. Struct., 93, 2, 342-350 (2011)
[28] Reddy, J. N., Microstructure-dependent couple stress theories of functionally graded beams, J. Mech. Phys. Solids, 59, 2382-2399 (2011) · Zbl 1270.74114
[29] Ke, L. L.; Wang, Y. S.; Yang., J.; Kitipornchai, S., Nonlinear free vibration of size-dependent functionally graded microbeams, Int. J. Eng. Sci., 50, 256-267 (2012) · Zbl 1423.74395
[30] Ke, L. L.; Yang, J.; Kitipornchai, S.; Bradford, M. A.; Bending, buckling and vibration of size-dependent functionally graded annular microplates, Compos. Struct., 94, 3250-3257 (2012)
[31] Akgöz, B.; Civalek, Ö., Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Compos. Struct., 98, 314-322 (2013)
[32] Şimşek, M.; Reddy, J. N., A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory, Compos. Struct., 101, 47-58 (2013)
[33] Reddy, J. N.; Berry, J., Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress, Compos. Struct., 94, 3664-3668 (2012)
[34] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Darabi, M. A., Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position, Compos. Struct., 127, 87-98 (2015)
[35] Reddy, J. N.; Kim, J., A nonlinear modified couple stress-based third-order theory of functionally graded plates, Compos. Struct., 94, 1128-1143 (2012)
[36] Reddy, J. N.; Romanoff, J.; Loya, J. A., Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory, Eur. J. Mech. A: Solid, 56, 92-104 (2016) · Zbl 1406.74448
[37] Ansari, R.; Gholami, R.; Sahmani, S., Free vibration analysis of size-dependent functonally graded microbeams based on the strain gradient Timoshenko beam theory, Compos. Struct., 94, 221-228 (2011)
[38] Ansari, R.; Gholami, R.; Sahmani, S., Study of small scale effects on the nonlinear vibration response of functionally graded Timoshenko microbeams based on the strain gradient theory, J. Comput. Nonlinear Dyn., 7, Article 031009-1-9 (2012)
[39] Sahmani, S.; Bahrami, M.; Ansari, R., Nonlinear free vibration analysis of functionally graded third-order shear deformation microbeams based on the modified strain gradient elasticity theory, Compos. Struct., 110, 219-230 (2014)
[40] Zhang, B.; He, Y.; Liu, D.; Gan, Z.; Shen, L., A novel size-dependent functionally graded curved microbeam model based on the strain gradient elasticity theory, Compos. Struct., 106, 374-392 (2013)
[41] Zhang, B.; He, Y.; Liu, D.; Lei, J.; Shen, L.; Wang, L., A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates, Compos. Part B: Eng., 79, 553-580 (2015)
[42] Sahmani, S.; Ansari, R., On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory, Compos. Struct., 95, 430-442 (2013)
[43] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Darabi, M. A., Thermal buckling analysis of a Mindlin rectangular FGM microplate based on the strain gradient theory, J. Therm. Stress., 36, 446-465 (2013)
[44] Akgöz, B.; Civalek, Ö., Longitudinal vibration analysis of strain gradient bars made of functionally graded materials, Composite: Part B, 55, 263-268 (2013)
[45] Zhao, J.; Pedroso, D., Strain gradient theory in orthogonal curvilinear coordinates, Int. J. Solids Struct., 45, 3507-3520 (2008) · Zbl 1169.74334
[46] Gousias, N.; Lazopoulos, A. K., Axisymmetric bending of strain gradient elastic circular thin plates, Arch. Appl. Mech., 85, 11, 1719-1731 (2015) · Zbl 1347.74055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.