×

Optimal distributed control of a stochastic Cahn-Hilliard equation. (English) Zbl 1425.35090

Summary: We study an optimal distributed control problem associated to a stochastic Cahn-Hilliard equation with a classical double-well potential and Wiener multiplicative noise, where the control is represented by a source term in the definition of the chemical potential. By means of probabilistic and analytical compactness arguments, existence of a relaxed optimal control is proved. Then, the linearized system and the corresponding backward adjoint system are analyzed through monotonicity and compactness arguments, and first-order necessary conditions for optimality are proved.

MSC:

35K55 Nonlinear parabolic equations
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
80A22 Stefan problems, phase changes, etc.
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

References:

[1] D. C. Antonopoulou, G. Karali, and A. Millet, Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion, J. Differential Equations, 260 (2016), pp. 2383-2417. · Zbl 1382.35343
[2] V. Barbu, M. Röckner, and D. Zhang, Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise, Ann. Probab., 46 (2018), pp. 1957-1999. · Zbl 1431.60053
[3] C. Bauzet, E. Bonetti, G. Bonfanti, F. Lebon, and G. Vallet, A global existence and uniqueness result for a stochastic Allen-Cahn equation with constraint, Math. Methods Appl. Sci., 40 (2017), pp. 5241-5261. · Zbl 1390.35434
[4] E. Bonetti, P. Colli, L. Scarpa, and G. Tomassetti, A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity, Commun. Pure Appl. Anal., 17 (2018), pp. 1001-1022. · Zbl 1393.35235
[5] D. Breit, E. Feireisl, and M. Hofmanová. Stochastically Forced Compressible Fluid Flows, De Gruyter Ser. Appl. Numer. Math. 3, De Gruyter, Berlin, 2018. · Zbl 1387.76001
[6] Z. A. Brzeźniak and R. Serrano, Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces, SIAM J. Control Optim., 51 (2013), pp. 2664-2703. · Zbl 1283.60092
[7] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258-267. · Zbl 1431.35066
[8] L. Cherfils, S. Gatti, and A. Miranville, A variational approach to a Cahn-Hilliard model in a domain with nonpermeable walls, J. Math. Sci. (N.Y.), 189 (2013), pp. 604-636. · Zbl 1276.49014
[9] L. Cherfils, A. Miranville, and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), pp. 561-596. · Zbl 1250.35129
[10] L. Cherfils and M. Petcu, A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), pp. 517-549. · Zbl 1325.65133
[11] P. Colli, M. H. Farshbaf-Shaker, G. Gilardi, and J. Sprekels, Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), pp. 2696-2721. · Zbl 1326.49033
[12] P. Colli, M. H. Farshbaf-Shaker, and J. Sprekels, A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), pp. 1-24. · Zbl 1309.74054
[13] P. Colli and T. Fukao, Cahn-Hilliard equation with dynamic boundary conditions and mass constraint on the boundary, J. Math. Anal. Appl., 429 (2015), pp. 1190-1213. · Zbl 1327.35149
[14] P. Colli and T. Fukao, Equation and dynamic boundary condition of Cahn-Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), pp. 413-433. · Zbl 1323.35092
[15] P. Colli and T. Fukao, Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems, J. Differential Equations, 260 (2016), pp. 6930-6959. · Zbl 1334.35154
[16] P. Colli, G. Gilardi, P. Podio-Guidugli, and J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn., 24 (2012), pp. 437-459. · Zbl 1260.49031
[17] P. Colli, G. Gilardi, and J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math., 80 (2012), pp. 119-149. · Zbl 1331.49028
[18] P. Colli, G. Gilardi, and J. Sprekels, On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential, J. Math. Anal. Appl., 419 (2014), pp. 972-994. · Zbl 1295.35248
[19] P. Colli, G. Gilardi, and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), pp. 311-325. · Zbl 1327.35162
[20] P. Colli, G. Gilardi, and J. Sprekels, A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), pp. 195-225. · Zbl 1338.35227
[21] P. Colli and L. Scarpa, From the viscous Cahn-Hilliard equation to a regularized forward-backward parabolic equation, Asymptot. Anal., 99 (2016), pp. 183-205. · Zbl 1353.35232
[22] P. Colli and J. Sprekels, Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary condition, SIAM J. Control Optim., 53 (2015), pp. 213-234. · Zbl 1382.74089
[23] H. Cook, Brownian motion in spinodal decomposition, Acta Metallurgica, 18 (1970), pp. 297-306.
[24] F. Cornalba, A nonlocal stochastic Cahn-Hilliard equation, Nonlinear Anal., 140 (2016), pp. 38-60. · Zbl 1338.60156
[25] G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation, Nonlinear Anal., 26 (1996), pp. 241-263. · Zbl 0838.60056
[26] A. Debussche and L. Goudenège, Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections, SIAM J. Math. Anal., 43 (2011), pp. 1473-1494. · Zbl 1233.60036
[27] A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection, Ann. Probab., 35 (2007), pp. 1706-1739. · Zbl 1130.60068
[28] K. Du and Q. Meng, A revisit to \(W^n_2\)-theory of super-parabolic backward stochastic partial differential equations in \(R^d\), Stochastic Process. Appl., 120 (2010), pp. 1996-2015. · Zbl 1203.60083
[29] K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations, SIAM J. Control Optim., 51 (2013), pp. 4343-4362. · Zbl 1285.49018
[30] N. Elezović and A. Mikelić, On the stochastic Cahn-Hilliard equation, Nonlinear Anal., 16 (1991), pp. 1169-1200. · Zbl 0729.60057
[31] C. M. Elliott and Z. Songmu, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal., 96 (1986), pp. 339-357. · Zbl 0624.35048
[32] C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations, 128 (1996), pp. 387-414. · Zbl 0855.35067
[33] E. Feireisl and M. Petcu, A diffuse interface model of a two-phase flow with thermal fluctuations, Appl. Math. Optim., in press. · Zbl 1416.35204
[34] F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), pp. 367-391. · Zbl 0831.60072
[35] M. Fuhrman, Y. Hu, and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs, Appl. Math. Optim., 68 (2013), pp. 181-217. · Zbl 1282.93274
[36] M. Fuhrman and C. Orrieri, Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift, SIAM J. Control Optim., 54 (2016), pp. 341-371. · Zbl 1345.49036
[37] G. Gilardi, A. Miranville, and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), pp. 881-912. · Zbl 1172.35417
[38] G. Gilardi, A. Miranville, and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), pp. 679-712. · Zbl 1223.35067
[39] L. Goudenège, Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection, Stochastic Process. Appl., 119 (2009), pp. 3516-3548. · Zbl 1180.60054
[40] I. Gyöngy and N. Krylov, Existence of strong solutions for Itô’s stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), pp. 143-158. · Zbl 0847.60038
[41] C. Hao and G. Wang, Well-posedness for the stochastic viscous Cahn-Hilliard equation, J. Nonlinear Convex Anal., 18 (2017), pp. 2219-2228. · Zbl 1394.35591
[42] M. Hintermüller and D. Wegner, Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density, SIAM J. Control Optim., 50 (2012), pp. 388-418. · Zbl 1250.35131
[43] M. Hofmanová, Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl., 123 (2013), pp. 4294-4336. · Zbl 1291.60130
[44] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Math. Libr. 24, 2nd ed. North-Holland Publishing Co., Amsterdam, 1989. · Zbl 0684.60040
[45] X. Ju, H. Wang, D. Li, and J. Duan, Global mild solutions and attractors for stochastic viscous Cahn-Hilliard equation, Abstr. Appl. Anal., 22 (2011), 670786. · Zbl 1218.37110
[46] D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, and J. Kim, Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation, Comput. Materials Sci., 81 (2014), pp. 216-225.
[47] C. Marinelli and L. Scarpa. A variational approach to dissipative SPDEs with singular drift, Ann. Probab., 46 (2018), pp. 1455-1497. · Zbl 1454.60097
[48] A. Miranville and G. Schimperna, On a doubly nonlinear Cahn-Hilliard-Gurtin system, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), pp. 675-697. · Zbl 1203.35045
[49] A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material Instabilities in Continuum Mechanics, J. M. Ball, ed., Oxford University Press, New York, 1988, pp. 329-342. · Zbl 0632.76119
[50] C. Orrieri, A stochastic maximum principle with dissipativity conditions, Discrete Contin. Dyn. Syst., 35 (2015), pp. 5499-5519. · Zbl 1332.93381
[51] C. Orrieri and L. Scarpa, Singular stochastic Allen-Cahn equations with dynamic boundary conditions, J. Differential Equations, 266 (2019), pp. 4624-4667. · Zbl 1461.35255
[52] C. Orrieri, G. Tessitore, and P. Veverka, Ergodic maximum principle for stochastic systems, Appl. Math. Optim., (2017). · Zbl 1427.60131
[53] C. Orrieri and P. Veverka, Necessary stochastic maximum principle for dissipative systems on infinite time horizon, ESAIM Control Optim. Calc. Var., 23 (2017), pp. 337-371. · Zbl 1354.93178
[54] E. Rocca and J. Sprekels, Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in three dimensions, SIAM J. Control Optim., 53 (2015), pp. 1654-1680. · Zbl 1322.49006
[55] L. Scarpa, On the stochastic Cahn-Hilliard equation with a singular double-well potential, Nonlinear Anal., 171 (2018), pp. 102-133. · Zbl 1390.35122
[56] L. Scarpa, The Stochastic Viscous Cahn-Hilliard Equation: Well-Posedness, Regularity and Vanishing Viscosity Limit, e-print, , 2018.
[57] L. Scarpa, Existence and uniqueness of solutions to singular Cahn-Hilliard equations with nonlinear viscosity terms and dynamic boundary conditions, J. Math. Anal. Appl., 469 (2019), pp. 730-764. · Zbl 1516.35224
[58] J. Simon, Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl. (4), 146 (1987), pp. 65-96. · Zbl 0629.46031
[59] A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer Ser. Statist., Springer-Verlag, New York, 1996. · Zbl 0862.60002
[60] G. Vallet and A. Zimmermann, Well-posedness for a pseudomonotone evolution problem with multiplicative noise, J. Evol. Equ., 19 (2019), pp. 153-202. · Zbl 1427.60136
[61] J. Yong and X. Y. Zhou, Stochastic Controls, Stoch. Model. Appl. Probab. 43, Springer-Verlag, New York, 1999. · Zbl 0943.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.