×

Conservative stochastic Cahn-Hilliard equation with reflection. (English) Zbl 1130.60068

The authors consider a conservative stochastic Cahn-Hilliard equation with homogeneous Neumann boundary conditions and reflection at 0. The equation is driven by the derivative in space of a space-time white noise and contains a double Laplacian in the drift. Since the maximum principle does not work for the double Laplacian, the techniques based on the penalization method break down. Then, the authors give a new approach to the equation that yields well-posedness, the study of the invariant measure and an integration by parts formula on such measures. More precisely, they obtain pathwise uniqueness, existence of stationary and strong solutions and they also study the related Dirichlet form. One of the main tools of this work is to consider an uniform strong Feller property. It seems that this new approach can be applied to some extensions of the original equation.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus
37L40 Invariant measures for infinite-dimensional dissipative dynamical systems
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Blömker, D., Maier-Paape, S. and Wanner, T. (2001). Spinodal decomposition for the Cahn–Hilliard–Cook equation. Comm. Math. Phys. 223 553–582. · Zbl 0993.60061 · doi:10.1007/PL00005585
[2] Blömker, D., Maier-Paape, S. and Wanner, T. (2004). Phase separation in stochastic Cahn–Hillard model. Available at http://www.instmath.rwth-aachen.de/. · Zbl 1130.60066
[3] Blowey, J. F. and Elliott, C. M. (1991). The Cahn–Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. European J. Appl. Math. 2 233–280. · Zbl 0797.35172 · doi:10.1017/S095679250000053X
[4] Bonaccorsi, S. and Zambotti, L. (2004). Integration by parts on the Brownian meander. Proc. Amer. Math. Soc. 132 875–883. · Zbl 1039.60052 · doi:10.1090/S0002-9939-03-07097-7
[5] Cardon-Weber, C. (2002). Cahn–Hilliard stochastic equation: Strict positivity of the density. Stochastics Stochastics Rep. 72 191–227. · Zbl 1002.60050 · doi:10.1080/10451120290019195
[6] Cerrai, S. (2001). Second Order PDE’s in Finite and Infinite Dimension. Lecture Notes in Math. 1762 . Springer, Berlin. · Zbl 0983.60004
[7] Dalang, R. C., Mueller, C. and Zambotti, L. (2006). Hitting properties of parabolic s.p.d.e.’s with reflection. Ann. Probab. 34 1423–1450. · Zbl 1128.60050 · doi:10.1214/009117905000000792
[8] Da Prato, G. and Debussche, A. (1996). Stochastic Cahn–Hilliard equation. Nonlinear Anal. 26 241–263. · Zbl 0838.60056 · doi:10.1016/0362-546X(94)00277-O
[9] Da Prato, G., Debussche, A. and Tubaro, L. (2004). Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation. Ann. Inst. H. Poincaré Probab. Statist. 40 73–88. · Zbl 1038.60055 · doi:10.1016/S0246-0203(03)00060-8
[10] Da Prato, G. and Zabczyk, J. (2004). Second Order Partial Differential Equations in Hilbert Spaces. Cambridge Univ. Press. · Zbl 1012.35001
[11] Debussche, A. and Dettori, L. (1995). On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Analysis T. M. A. 24 1491–1514. · Zbl 0831.35088 · doi:10.1016/0362-546X(94)00205-V
[12] Denisov, I. V. (1984). A random walk and a Wiener process near a maximum. Theor. Probab. Appl. 28 821–824. · Zbl 0544.60070 · doi:10.1137/1128082
[13] Elezović, N. and Mikelić, A. (1991). On the stochastic Cahn–Hilliard equation. Nonlinear Anal. 16 1169–1200. · Zbl 0729.60057 · doi:10.1016/0362-546X(91)90204-E
[14] Ethier, S. and Kurtz, T. (1986). Markov Processes. Wiley, New York. · Zbl 0592.60049
[15] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin. · Zbl 0838.31001
[16] Funaki, T. and Ishitani, K. (2007). Integration by parts formulae for Wiener measures on a path space between two curves. Probab. Theory Related Fields 137 289–321. · Zbl 1114.60046 · doi:10.1007/s00440-006-0010-9
[17] Funaki, T. and Olla, S. (2001). Fluctuations for \(\nabla\phi\) interface model on a wall. Stochastics Process. Appl. 94 1–27. · Zbl 1055.60096 · doi:10.1016/S0304-4149(00)00104-6
[18] Giacomin, G., Olla, S. and Spohn, H. (2001). Equilibrium fluctuations for \(\nabla\phi\) interface model. Ann. Probab. 29 1138–1172. · Zbl 1017.60100 · doi:10.1214/aop/1015345600
[19] Gyöngy, I. and Krylov, N.V. (1996). Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields 105 143–158. · Zbl 0847.60038 · doi:10.1007/BF01203833
[20] Ma, Z. M. and Röckner, M. (1992). Introduction to the Theory of (Non Symmetric) Dirichlet Forms. Springer, Berlin. · Zbl 0826.31001
[21] Nualart, D. and Pardoux, E. (1992). White noise driven quasilinear SPDEs with reflection. Probab. Theory Related Fields 93 77–89. · Zbl 0767.60055 · doi:10.1007/BF01195389
[22] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion . Springer, Berlin. · Zbl 0731.60002
[23] Spohn, H. (1993). Interface motion in models with stochastic dynamics. J. Statist. Phys. 71 1081–1132. · Zbl 0935.82546 · doi:10.1007/BF01049962
[24] Zambotti, L. (2002). Integration by parts on convex sets of paths and applications to SPDEs with reflection. Probab. Theory Related Fields 123 579–600. · Zbl 1009.60047 · doi:10.1007/s004400200203
[25] Zambotti, L. (2004). Occupation densities for SPDEs with reflection. Ann. Probab. 32 191–215. · Zbl 1121.60069 · doi:10.1214/aop/1078415833
[26] Zambotti, L. (2004). Fluctuations for a \(\nabla\varphi\) interface model with repulsion from a wall. Probab. Theory Related Fields 129 315–339. · Zbl 1073.60099 · doi:10.1007/s00440-004-0335-1
[27] Zambotti, L. (2006). On the Brownian meander and excursion conditioned to have a fixed time average. Available at http://arxiv.org/abs/math.PR/0605720.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.