×

Robust valuation, arbitrage ambiguity and profit & loss analysis. (English) Zbl 1424.91143

Summary: Model uncertainty is a type of inevitable financial risk. Mistakes on the choice of pricing model may cause great financial losses. In this paper, we investigate financial markets with mean-volatility uncertainty. Models for stock market and option market with uncertain prior distributions are established by Peng’s G-stochastic calculus. On the hedging market, the upper price of an (exotic) option is derived following the Black-Scholes-Barenblatt equation. It is interesting that the corresponding Barenblatt equation does not depend on mean uncertainty of the underlying stocks. Appropriate definitions of arbitrage for super- and sub-hedging strategies are presented such that the super- and sub-hedging prices are reasonable. In particular, the condition of arbitrage for sub-hedging strategy fills the gap of the theory of arbitrage under model uncertainty. Finally we show that the term \(K\) of finite variance arising in the superhedging strategy is interpreted as the max profit & loss (P&L) of shorting a delta-hedged option. The ask-bid spread is in fact an accumulation of the superhedging P&L and the sub-hedging P&L.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60H30 Applications of stochastic analysis (to PDEs, etc.)

Software:

Dowd
Full Text: DOI

References:

[1] Black, F; Scholes, M, The pricing of options and corporate liabilities, J. Polit. Econ., 81, 637-654, (1973) · Zbl 1092.91524 · doi:10.1086/260062
[2] Dowd, K.: Measuring Market Risk, 2nd edn. Wiley, Hoboken (2005) · doi:10.1002/9781118673485
[3] Cont, R, Model uncertainty and its impact on the pricing of derivative instruments, Math. Finance, 16, 519-547, (2006) · Zbl 1133.91413 · doi:10.1111/j.1467-9965.2006.00281.x
[4] Knight, F.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)
[5] Epstein, LG, A definition of uncertainty aversion, Rev. Econ. Stud., 65, 579-608, (1999) · Zbl 0953.91002 · doi:10.1111/1467-937X.00099
[6] Hansen, L; Sargent, T; Tallarini, T, Robust permanent income and pricing, Rev. Econ. Stud., 66, 872-907, (1999) · Zbl 0943.91048 · doi:10.1111/1467-937X.00112
[7] Chen, Z; Epstein, L, Ambiguity, risk and asset returns in continuous time, Econometrica, 70, 1403-1443, (2002) · Zbl 1121.91359 · doi:10.1111/1468-0262.00337
[8] Epstein, LG; Wang, L, Uncertainty, risk neutral measures and asset price booms and crashes, J. Econ. Theory, 67, 40-80, (1995) · Zbl 0844.90012 · doi:10.1006/jeth.1995.1065
[9] Routledge, B; Zin, S, Model uncertainty and liquidity, Rev. Econ. Dyn., 12, 543-566, (2009) · doi:10.1016/j.red.2008.10.002
[10] Dow, J; Werlang, S, Uncertainty aversion, risk aversion, and the optimal choice of portfolio, Econometrica, 60, 197-204, (1992) · Zbl 0756.90002 · doi:10.2307/2951685
[11] Schmeidler, D, Subjective probability and expected utility without additivity, Econometrica, 57, 571-587, (1989) · Zbl 0672.90011 · doi:10.2307/1911053
[12] Epstein, LG; Wang, L, Intertemporal asset pricing under Knightian uncertainty, Econometrica, 62, 283-322, (1994) · Zbl 0799.90016 · doi:10.2307/2951614
[13] Karoui, N; Ravanelli, C, Cash sub-additive risk measures and interest rate ambiguity, Math. Finance, 19, 561-590, (2009) · Zbl 1184.91111 · doi:10.1111/j.1467-9965.2009.00380.x
[14] Xu, YH, Multidimensional dynamic risk measure via conditional g-expectation, Math. Finance, 26, 638-673, (2016) · Zbl 1378.91128 · doi:10.1111/mafi.12062
[15] Gundel, A, Robust utility maximization for complete and incomplete market models, Finance Stoch., 9, 151-176, (2005) · Zbl 1106.91027 · doi:10.1007/s00780-004-0148-1
[16] Riedel, F, Optimal stopping with multiple priors, Econometrica, 77, 857-908, (2009) · Zbl 1181.60064 · doi:10.3982/ECTA7594
[17] Xu, YH, Stochastic maximum principle for optimal control with multiple priors, Syst. Control Lett., 64, 114-118, (2014) · Zbl 1283.93323 · doi:10.1016/j.sysconle.2013.12.001
[18] Avellaneda, M; Levy, A; Paras, A, Pricing and hedging derivative securities in markets with uncertain volatilities, Appl. Math. Finance, 2, 73-88, (1995) · Zbl 1466.91323 · doi:10.1080/13504869500000005
[19] Lyons, T, Uncertain volatility and the risk free synthesis of derivatives, Appl. Math. Finance, 2, 117-133, (1995) · Zbl 1466.91347 · doi:10.1080/13504869500000007
[20] Eberlein, E; Madan, DB; Pistorius, M; Yor, M, Bid and ask prices as non-linear continuous time G-expectations based on distortions, Math. Financ. Econ., 8, 265-289, (2014) · Zbl 1307.91086 · doi:10.1007/s11579-014-0117-1
[21] Eberlein, E; Madan, DB; Pistorius, M; Schoutens, W; Yor, M, Two price economies in continuous time, Ann. Finance, 10, 71-100, (2014) · Zbl 1298.91086 · doi:10.1007/s10436-013-0228-3
[22] Epstein, LG; Ji, S, Ambiguous volatility, possibility and utility in continuous time, J. Math. Econ., 50, 269-282, (2014) · Zbl 1284.91148 · doi:10.1016/j.jmateco.2013.09.005
[23] Epstein, LG; Ji, S, Ambiguous volatility and asset pricing in continuous time, Rev. Financ. Stud., 26, 1740-1786, (2013) · doi:10.1093/rfs/hht018
[24] Madan, DB, A two price theory of financial equilibrium with risk management implications, Ann. Finance, 8, 489-505, (2012) · Zbl 1298.91205 · doi:10.1007/s10436-012-0200-7
[25] Madan, DB; Schoutens, W, Structured products equilibria in conic two price markets, Math. Financ. Econ., 6, 37-57, (2012) · Zbl 1264.91148 · doi:10.1007/s11579-012-0064-7
[26] Nutz, M; Soner, M, Superhedging and dynamic risk measures under volatility uncertainty, SIAM J. Control Optim., 50, 2065-2089, (2012) · Zbl 1263.91026 · doi:10.1137/100814925
[27] Vorbrink, J, Financial markets with volatility uncertainty, J. Math. Econ., 53, 64-78, (2014) · Zbl 1305.91232 · doi:10.1016/j.jmateco.2014.05.008
[28] Heston, S, A closed-form solution for options with stochastic volatility with application to bond and currency options, Rev. Financ. Stud., 6, 327-343, (1993) · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[29] Martini, C.: Superreplications and stochastic control. In: 3rd Italian Conference on Mathematical Finance, Trento (1997) · Zbl 1284.91148
[30] Frey, R, Superreplication in stochastic volatility models and optimal stopping, Finance Stoch., 4, 161-187, (2000) · Zbl 0951.91029 · doi:10.1007/s007800050010
[31] Denis, L; Martini, C, A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, Ann. Appl. Probab., 16, 827-852, (2006) · Zbl 1142.91034 · doi:10.1214/105051606000000169
[32] Soner, HM; Touzi, N; Zhang, J, Quasi-sure stochastic analysis through aggregation, Electr. J. Probab., 16, 1844-1879, (2011) · Zbl 1245.60062 · doi:10.1214/EJP.v16-950
[33] Peng, S.: G-expectation, G-Brownian motion and related stochastic calculus of Ito’s type. In: Benth, F.E., Di Nunno, G., Lindstrøm, T., Øksendal, B., Zhang, T. (eds.) Stochastic Analysis and Applications, The Abel Symposium 2005, Abel Symposia 2, pp. 541—567. Springer, New York (2006) · Zbl 1131.60057
[34] Peng, S.: G-Brownian motion and dynamic risk measure under volatility uncertainty. arXiv:0711.2834 v1 [math.PR] (2007) · Zbl 1184.91111
[35] Peng, S, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Process. Appl., 118, 2223-2253, (2008) · Zbl 1158.60023 · doi:10.1016/j.spa.2007.10.015
[36] Peng, S, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A Math., 52, 1391-1411, (2009) · Zbl 1184.60009 · doi:10.1007/s11425-009-0121-8
[37] Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. arXiv:1002.4546v1 [math.PR] (2010) · Zbl 0645.35025
[38] Hu, M; Peng, S, On representation theorem of G-expectations and paths of G-Brownian motion, Acta. Math. Appl. Sin. Engl. Ser., 25, 1-8, (2009) · Zbl 1190.60043
[39] Soner, HM; Touzi, N; Zhang, J, Martingale representation theorem under G-expectation, Stoch. Process. Appl., 121, 265-287, (2011) · Zbl 1228.60070 · doi:10.1016/j.spa.2010.10.006
[40] Peng, S.: Backward stochastic differential equation, nonlinear expectations and their applications. In: Proceedings of the International Congress of Mathematicians. Hyderabad, India (2010)
[41] Karatzas, I; Kou, SG, On the pricing of contingent claims under constraints, The Annals of Applied Probability, 6, 321-369, (1996) · Zbl 0856.90012 · doi:10.1214/aoap/1034968135
[42] Martini, C., Jacquier, A.: Uncertain volatility model. In: Encyclopedia of Quantitative Finance. Wiley (2010) http://onlinelibrary.wiley.com/doi/10.1002/9780470061602.eqf08032/full
[43] Jacquier, A., Slaoui, S.: Variance dispersion and correlation swaps. arXiv:1004.0125v1 [q-fin.PR] (2010) · Zbl 1138.91464
[44] Beißner, P.: Coherent price systems and uncertainty-neutral valuation. arXiv:1202.6632v1 [q-fin.GN] (2012) · Zbl 1378.91128
[45] Osuka, E, Girsanov’s formula for G-Brownian motion, Stoch. Process. Appl., 123, 1301-1318, (2013) · Zbl 1293.60081 · doi:10.1016/j.spa.2012.12.009
[46] Xu, J; Shang, H; Zhang, B, A Girsanov type theorem under G-framework, Stoch. Anal. Appl., 29, 386-406, (2011) · Zbl 1225.60115 · doi:10.1080/07362994.2011.548985
[47] Jiang, L.S., Xu, C.L., Ren, X.M., Li, S.H.: Mathematical Models and Case Study on Pricing Financial Derivatives, 1st edn. High Education Press, Beijing (2008). (Chinese version) · Zbl 1165.91300
[48] Meyer, G, The black Scholes Barenblatt equation for options with uncertain volatility and its application to static hedging, Int. J. Theor. Appl. Finance, 9, 673-703, (2006) · Zbl 1138.91464 · doi:10.1142/S0219024906003755
[49] Barenblatt, G.I.: Similarity, Self-Similarity and Intermediate Asymptotics. Consultants Bureau, New York (1979) · Zbl 0467.76005 · doi:10.1007/978-1-4615-8570-1
[50] Krylov, N.V.: Nonlinear Parabolic and Elliptic Equations of the Second Order. Reidel Publishing Company, Dordrecht (1987) · Zbl 0619.35004 · doi:10.1007/978-94-010-9557-0
[51] Wang, L, On the regularity of fully nonlinear parabolic equations: II, Commun. Pure Appl. Math., 45, 141-178, (1992) · Zbl 0774.35042 · doi:10.1002/cpa.3160450202
[52] Ishii, H, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s, Commun. Pure Appl. Math., 42, 15-45, (1989) · Zbl 0645.35025 · doi:10.1002/cpa.3160420103
[53] Vargiolu, T.: Existence, uniqueness and smoothness for the Black-Scholes-Barenblatt equation. Università di Padova, Padua (2001)
[54] Shreve, S.E.: Stochastic Calculus for Finance II: Continuous Time Models. Springer, Berlin (2004) · Zbl 1068.91041
[55] Karoui, N; Peng, S; Quenez, MC, Backward stochastic differential equation in finance, Math. Finance, 1, 1-71, (1997) · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[56] Song, Y, Some properties on G-evaluation and its applications to G-martingale decomposition, Sci. China Math., 54, 287-300, (2011) · Zbl 1225.60058 · doi:10.1007/s11425-010-4162-9
[57] Li, X.: On the Strict comparison theorem for G-expectations. arXiv:1002.1765v2 [math.PR] (2010) · Zbl 1293.60081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.