×

Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation. (English) Zbl 1158.60023

In 2005 the author of the present paper introduced the theory of \(G\)-normal distributions, \(G\)-expectations (a kind of nonlinear expectations), the one-dimensional \(G\)-Brownian motion and the associated stochastic calculus [Chin. Ann. Math., Ser. B 26, No. 2, 159–184 (2005; Zbl 1077.60045)]. Unlike the classical normal distribution \({\mathcal N}(0,\sigma^2)\), characterized by the linear heat equation \(\partial_tu(t,x)=1/2\cdot\sigma^2 \partial_{xx}^2u(t,x)\), the \(G\)-normal distribution \({\mathcal N}(0,[\sigma^2_1\sigma^2_2])\) with \(G(a):=\sigma^2_2 a^+-\sigma^2_1a^-,\) \(a\in\mathbb R\), is associated to the nonlinear heat equation \(\partial_tu(t,x)=1/2\cdot G(\partial_{xx}^2u(t,x)).\) This theory has been motivated by the earlier studies of \(g\)-expectations defined with the help of a backward stochastic differential equation [S. Peng, BSDE and stochastic optimizations, in: J. Yan, S. Peng, S. Fang, L. Wu (eds.), Topics in Stochastic Analysis, Science Press, Beijing (1997)] and by describing coherent and dynamic risk measures. In the present paper the author extends his former studies to the multi-dimensional \(G\)-Brownian motion: after having introduced multi-dimensional \(G\)-normal distributions via the nonlinear heat equation he defines the nonlinear \(G\)-expectation \(\widehat{E}\) on \(C_0(\mathbb R_+,\mathbb R^n)\) under which the coordinate process \(B\) is a process whose future increments are independent of the past ones and \(G\)-normally distributed. Such a process is called \(G\)-Brownian motion. The author then develops the related stochastic calculus: He introduces, in particular, the stochastic integral with respect to a \(G\)-Brownian motion, establishes an Itô formula and studies stochastic differential equations driven by a \(G\)-Brownian motion. The theory developed by the author has to be regarded as analog of the classical stochastic Itô calculus under the nonlinear expectation \(\widehat{E}\).

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H05 Stochastic integrals
60H30 Applications of stochastic analysis (to PDEs, etc.)

Citations:

Zbl 1077.60045

References:

[1] Ph. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Thinking Coherently, RISK 10, November, 1997, pp. 68-71; Ph. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Thinking Coherently, RISK 10, November, 1997, pp. 68-71
[2] Artzner, Ph.; Delbaen, F.; Eber, J.-M.; Heath, D., Coherent measures of risk, Math. Finance, 9, 203-228 (1999) · Zbl 0980.91042
[3] Briand, Ph.; Coquet, F.; Hu, Y.; Mémin, J.; Peng, S., A converse comparison theorem for BSDEs and related properties of \(g\)-expectations, Electron. Comm. Probab., 5 (2000) · Zbl 0966.60054
[4] P. Barrieu, N. El Karoui, Pricing, hedging and optimally designing derivatives via minimization of risk measures, Contemp. Math. 2004 (in press), preprint; P. Barrieu, N. El Karoui, Pricing, hedging and optimally designing derivatives via minimization of risk measures, Contemp. Math. 2004 (in press), preprint
[5] Chen, Z., A property of backward stochastic differential equations, C.R. Acad. Sci. Paris Sér. I, 326, 4, 483-488 (1998) · Zbl 0914.60025
[6] Chen, Z.; Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica, 70, 4, 1403-1443 (2002) · Zbl 1121.91359
[7] Chen, Z.; Kulperger, R.; Jiang, L., Jensen’s inequality for \(g\)-expectation: Part 1, C. R. Acad. Sci. Paris Sér. I 337, 725-730 (2003) · Zbl 1031.60014
[8] Chen, Z.; Peng, S., A nonlinear Doob-Meyer type decomposition and its application, SUT J. Math. (Japan), 34, 2, 197-208 (1998) · Zbl 0924.60037
[9] Chen, Z.; Peng, S., A general downcrossing inequality for \(g\)-martingales, Statist. Probab. Lett., 46, 2, 169-175 (2000) · Zbl 0954.60049
[10] Chung, K. L.; Williams, R., Introduction to Stochastic Integration (1990), Birkhäuser · Zbl 0725.60050
[11] Coquet, F.; Hu, Y.; Mémin, J.; Peng, S., A general converse comparison theorem for backward stochastic differential equations, C.R. Acad. Sci. Paris, t.333, Serie I, 577-581 (2001) · Zbl 0994.60064
[12] Coquet, F.; Hu, Y.; Memin, J.; Peng, S., Filtration-consistent nonlinear expectations and related \(g\)-expectations, Probab. Theory Related Fields, 123, 1-27 (2002) · Zbl 1007.60057
[13] Crandall, M.; Ishii, H.; Lions, P.-L., User’S guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015
[14] Daniell, P. J., A general form of integral, Ann. Math., 19, 279-294 (1918) · JFM 46.0395.01
[15] Delbaen, F., Coherent Risk Measures (Lectures given at the Cattedra Galileiana at the Scuola Normale di Pisa, March 2000) (2002), Scuola Normale di Pisa · Zbl 1060.91077
[16] F. Delbaen, E. Rosazza Gianin, S. Peng, \(m\)-Stable sets, risk measures and \(g\)-expectations, 2005, preprint; F. Delbaen, E. Rosazza Gianin, S. Peng, \(m\)-Stable sets, risk measures and \(g\)-expectations, 2005, preprint
[17] Denis, L.; Martinin, C., A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, Ann. Appl. Probab., 16, 2, 827-852 (2006) · Zbl 1142.91034
[18] Feyel, D.; de La Pradelle, A., Espaces de Sobolev gaussiens, Ann. Inst. Fourier, 39, 875-908 (1989) · Zbl 0664.46028
[19] Fleming, W. H.; Soner, H. M., Controlled Markov Processes and Viscosity Solutions (1992), Springer-Verlag: Springer-Verlag New York
[20] He, S. W.; Wang, J. G.; Yan, J.-A., Semimartingale Theory and Stochastic Calculus (1992), CRC Press: CRC Press Beijing · Zbl 0781.60002
[21] Huber, P. J., Robust Statistics (1981), John Wiley & Sons · Zbl 0536.62025
[22] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1981), North-Holland: North-Holland Amsterdam · Zbl 0495.60005
[23] Itô, K., Differential equations determining a Markoff process, J. Pan-Japan Math. Coll., No. 1077 (1942), Kiyosi Itô: Selected Papers, Springer, 1987
[24] Itô, K.; McKean, M., Diffusion Processes and Their Sample Paths (1965), Springer-Verlag · Zbl 0127.09503
[25] G. Jia, S. Peng, A new look at Jensen’s inequality for g expectations: \(g\)-convexity and their applications, 2007, preprint; G. Jia, S. Peng, A new look at Jensen’s inequality for g expectations: \(g\)-convexity and their applications, 2007, preprint
[26] Jiang, L., Some results on the uniqueness of generators of backward stochastic differential equations, C. R. Acad. Sci. Paris, Ser. I, 338, 575-580 (2004) · Zbl 1044.60054
[27] Jiang, L.; Chen, Z., A result on the probability measures dominated by \(g\)-expectation, Acta Math. Appl. Sinica (English Ser.), 20, 3, 507-512 (2004) · Zbl 1055.60059
[28] Jiang, L.; Chen, Z., On Jensen’s inequality for \(g\)-expectation, Chin. Ann. Math., 25B, 3, 401-412 (2004) · Zbl 1062.60057
[29] Karatzas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0638.60065
[30] Krylov, N. V., Controlled Diffusion Processes (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0459.93002
[31] Lyons, T., Uncertain volatility and the risk free synthesis of derivatives, Appl. Math. Finance, 2, 117-133 (1995) · Zbl 1466.91347
[32] Nisio, M., On a nonlinear semigroup attached to optimal stochastic control, Publ. RIMS, Kyoto Univ., 13, 513-537 (1976) · Zbl 0364.93039
[33] Nisio, M., On stochastic optimal controls and envelope of Markovian semi-groups, (Proc. of int. Symp. Kyoto (1976)), 297-325 · Zbl 0418.49031
[34] Øksendal, B., Stochastic Differential Equations (1998), Springer · Zbl 0897.60056
[35] Peng, S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation, Stochast. Stochast. Rep., 38, 2, 119-134 (1992) · Zbl 0756.49015
[36] Peng, S., Backward SDE and related \(g\)-expectation, (Mazliak, El Karoui, Backward Stochastic Differential Equations. Backward Stochastic Differential Equations, Pitman Research Notes in Math. Series, vol. 364 (1997)), 141-159 · Zbl 0892.60066
[37] Peng, S., BSDE and stochastic optimizations, (Topics in Stochastic Analysis (1997), Science Press: Science Press Beijing), Yan, J., Peng, S., Fang, S., Wu, L.M. Ch.2 (Chinese vers.)
[38] Peng, S., Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer’s type, Prob. Theory Related Fields, 113, 4, 473-499 (1999) · Zbl 0953.60059
[39] Peng, S., Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Math. Appl. Sinica (English Ser.), 20, 2, 1-24 (2004) · Zbl 1061.60063
[40] Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 26B, 2, 159-184 (2005) · Zbl 1077.60045
[41] Peng, S., Dynamical evaluations, C. R. Acad. Sci. Paris, Ser. I, 339, 585-589 (2004) · Zbl 1065.60087
[42] S. Peng, Dynamically consistent nonlinear evaluations and expectations, preprint (pdf-file available in arXiv:math.PR/0501415v1 24 Jan 2005), 2005; S. Peng, Dynamically consistent nonlinear evaluations and expectations, preprint (pdf-file available in arXiv:math.PR/0501415v1 24 Jan 2005), 2005
[43] S. Peng, \(G\)-Expectation, \(G\)-Brownian motion and related stochastic calculus of Itô’s type, in: Proceedings of the 2005 Abel Symposium, preprint (pdf-file available in: arXiv:math.PR/0601035v1, 3 Jan 2006), 2006 (in press); S. Peng, \(G\)-Expectation, \(G\)-Brownian motion and related stochastic calculus of Itô’s type, in: Proceedings of the 2005 Abel Symposium, preprint (pdf-file available in: arXiv:math.PR/0601035v1, 3 Jan 2006), 2006 (in press)
[44] S. Peng, \(G\)-Brownian motion and dynamic risk measure under volatility uncertainty, preprint in arXiv:math.PR/0711.2834v1, 2007; S. Peng, \(G\)-Brownian motion and dynamic risk measure under volatility uncertainty, preprint in arXiv:math.PR/0711.2834v1, 2007
[45] S. Peng, M. Xu, Numerical calculations to solve BSDE, 2003, preprint; S. Peng, M. Xu, Numerical calculations to solve BSDE, 2003, preprint
[46] Protter, Ph., Stochastic Integration and Differential Equations (1990), Springer-Verlag · Zbl 0694.60047
[47] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion (1991), Springer-Verlag · Zbl 0731.60002
[48] E.G. Rosazza, Some examples of risk measures via \(g\)-expectations, preprint, Insurance Math. Econom. 2003 (in press); E.G. Rosazza, Some examples of risk measures via \(g\)-expectations, preprint, Insurance Math. Econom. 2003 (in press)
[49] P. Cheridito, H.M. Soner, N. Touzi, N. Victoir, Second order backward stochastic differential equations and fully non-linear parabolic PDEs, preprint (pdf-file available in arXiv:math.PR/0509295v1, 14 Sep 2005); P. Cheridito, H.M. Soner, N. Touzi, N. Victoir, Second order backward stochastic differential equations and fully non-linear parabolic PDEs, preprint (pdf-file available in arXiv:math.PR/0509295v1, 14 Sep 2005)
[50] Yan, J.-A., Lecture Note on Measure Theory (1998), Science Press: Science Press Beijing, Chinese version
[51] Yong, J.; Zhou, X., Stochastic Controls: Hamiltonian Systems and HJB Equations (1999), Springer-Verlag · Zbl 0943.93002
[52] Yosida, K., Functional Analysis (1980), Springer · Zbl 0217.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.