×

A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. (English) Zbl 1423.92093

Summary: The main objective of this research is to investigate a new fractional mathematical model involving a nonsingular derivative operator to discuss the clinical implications of diabetes and tuberculosis coexistence. The new model involves two distinct populations, diabetics and nondiabetics, while each of them consists of seven tuberculosis states: susceptible, fast and slow latent, actively tuberculosis infection, recovered, fast latent after reinfection, and drug-resistant. The fractional operator is also considered a recently introduced one with Mittag-Leffler nonsingular kernel. The basic properties of the new model including non-negative and bounded solution, invariant region, and equilibrium points are discussed thoroughly. To solve and simulate the proposed model, a new and efficient numerical method is established based on the product-integration rule. Numerical simulations are presented, and some discussions are given from the mathematical and biological viewpoints. Next, an optimal control problem is defined for the new model by introducing four control variables reducing the number of infected individuals. For the control problem, the necessary and sufficient conditions are derived and numerical simulations are given to verify the theoretical analysis.
©2019 American Institute of Physics

MSC:

92C50 Medical applications (general)
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Ahmed, N.; Hasnain, S. E., Molecular epidemiology of tuberculosis in India: Moving forward with a systems biology approach, Tuberculosis, 91, 5, 407-413 (2011)
[2] See for more information.
[3] See for more details about tuberculosis.
[4] See for more details about diabetes.
[5] Dooley, K. E.; Chaisson, R. E., Tuberculosis and diabetes mellitus: Convergence of two epidemics, Lancet Infect. Dis., 9, 12, 737-746 (2009)
[6] Chang, J. T.; Dou, H. Y.; Yen, C. L.; Wu, Y. H.; Huang, R. M.; Lin, H. J.; Su, I. J.; Shie, C. C., Effect of type 2 diabetes mellitus on the clinical severity and treatment outcome in patients with pulmonary tuberculosis: A potential role in the emergence of multidrug-resistance, J. Formos. Med. Assoc., 110, 6, 372-381 (2011)
[7] Moualeu, D. P.; Bowong, S.; Tewa, J. J.; Emvudu, Y., Analysis of the impact of diabetes on the dynamical transmission of tuberculosis, Math. Model. Nat. Phenom., 7, 3, 117-146 (2012) · Zbl 1253.92034
[8] Pan, S. C.; Ku, C. C.; Kao, D.; Ezzati, M.; Fang, C. T.; Lin, H. H., Effect of diabetes on tuberculosis control in 13 countries with high tuberculosis: A modelling study, Lancet Diabetes Endocrinol., 3, 5, 323-330 (2015)
[9] Girardi, E.; Schepisi, M. S.; Goletti, D.; Bates, M.; Mwaba, P.; Yeboah-Manu, D.; Ntoumi, F.; Palmieri, F.; Maeurer, M.; Zumla, A.; Ippolito, G., The global dynamics of diabetes and tuberculosis: The impact of migration and policy implications, Int. J. Infect. Dis., 56, 45-53 (2017)
[10] Pinto, C. M. A.; Carvalho, A. R. M., Diabetes mellitus and TB co-existence: Clinical implications from a fractional order modelling, Appl. Math. Model., 68, 219-243 (2019) · Zbl 1481.92155
[11] Hajipour, M.; Jajarmi, A.; Baleanu, D.; Sun, H. G., On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci., 69, 119-133 (2019) · Zbl 1509.65071
[12] Baleanu, D.; Sajjadi, S. S.; Jajarmi, A.; Asad, J. H., New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Eur. Phys. J. Plus, 134, 181 (2019)
[13] Baleanu, D.; Jajarmi, A.; Asad, J. H., Classical and fractional aspects of two coupled pendulums, Rom. Rep. Phys., 71, 1, 103 (2019)
[14] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20, 2, 763-769 (2016)
[15] Baleanu, D.; Jajarmi, A.; Bonyah, E.; Hajipour, M., New aspects of the poor nutrition in the life cycle within the fractional calculus, Adv. Differ. Equ., 2018, 1, 230 · Zbl 1446.92194
[16] Baleanu, D.; Jajarmi, A.; Hajipour, M., On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel, Nonlinear Dyn., 94, 1, 397-414 (2018) · Zbl 1412.34012
[17] Yusuf, A.; Qureshi, S.; Inc, M.; Aliyu, A. I.; Baleanu, D.; Shaikh, A. A., Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel, Chaos, 28, 12, 123121 (2018) · Zbl 1404.92211
[18] Saad, K. M.; Khader, M. M.; Gómez-Aguilar, J. F.; Baleanu, D., Numerical solutions of the fractional Fishers type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29, 023116 (2019) · Zbl 1409.35225
[19] Qureshi, S.; Yusuf, A.; Shaikh, A. A.; Inc, M.; Baleanu, D., Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29, 1, 013143 (2019) · Zbl 1406.92325
[20] Khan, I., New idea of Atangana and Baleanu fractional derivatives to human blood flow in nanofluids, Chaos, 29, 013121 (2019) · Zbl 1406.76095
[21] Owolabi, K. M.; Atangana, A., On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems, Chaos, 29, 023111 (2019) · Zbl 1409.34016
[22] Abdeljawad, T.; Baleanu, D., Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10, 1098-1107 (2017) · Zbl 1412.47086
[23] Diethelm, K., A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 71, 4, 613-619 (2013)
[24] van den Driessche, P.; Watmough, J., Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[25] Young, A., Approximate product-integration, Proc. R. Soc. Lond. Ser. A, 224, 552-561 (1954) · Zbl 0055.36001
[26] Garrappa, R., Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6, 2, 16 (2018) · Zbl 06916890
[27] Ghanbari, B.; Kumar, D., Numerical solution of predator-prey model with Beddington-DeAngelis functional response and 30 fractional derivatives with Mittag-Leffler kernel, Chaos, 29, 063103 (2019) · Zbl 1421.34033
[28] Hairer, E.; Lubich, C.; Schlichte, M., Fast numerical solution of nonlinear Volterra convolution equations, SIAM J. Sci. Statist. Comput., 6, 3, 532-541 (1985) · Zbl 0581.65095
[29] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36, 1, 31-52 (2004) · Zbl 1055.65098
[30] Garrappa, R., On linear stability of predictor – corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87, 10, 2281-2290 (2010) · Zbl 1206.65197
[31] Popolizio, M., Numerical solution of multiterm fractional differential equations using the matrix Mittag-Leffler functions, Mathematics, 6, 1, 7 (2018) · Zbl 06916882
[32] Baleanu, D.; Jajarmi, A.; Hajipour, M., A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel, J. Optimiz. Theory App., 175, 3, 718-737 (2017) · Zbl 1383.49030
[33] Hackbush, W., A numerical method for solving parabolic equations with opposite orientations, Computing, 20, 3, 229-240 (1978) · Zbl 0391.65044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.