×

Numerical solution of multiterm fractional differential equations using the matrix Mittag-Leffler functions. (English) Zbl 06916882

Summary: Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs) to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag-Leffler (ML) functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods.

MSC:

65-XX Numerical analysis
34-XX Ordinary differential equations
60-XX Probability theory and stochastic processes

Software:

FracPECE; ML

References:

[1] Gorenflo, R.; Mainardi, F.; Fractional calculus: Integral and differential equations of fractional order; Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996): Vienna, Austria 1997; Volume Volume 378 ,223-276. · Zbl 1438.26010
[2] Mainardi, F.; Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics; Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996): Vienna, Austria 1997; ,291-348. · Zbl 0917.73004
[3] Podlubny, I.; Fractional differential equations; Mathematics in Science and Engineering: San Diego, CA, USA 1999; Volume Volume 198 . · Zbl 0924.34008
[4] Diethelm, K.; ; The Analysis of Fractional Differential Equations: Berlin, Germany 2010; Volume Volume 2004 .
[5] Mainardi, F.; ; Fractional Calculus and Waves in Linear Viscoelasticity: London, UK 2010; . · Zbl 1210.26004
[6] Lubich, C.; Runge-Kutta theory for Volterra and Abel integral equations of the second kind; Math. Comput.: 1983; Volume 41 ,87-102. · Zbl 0538.65091
[7] Lubich, C.; Fractional linear multistep methods for Abel-Volterra integral equations of the second kind; Math. Comput.: 1985; Volume 45 ,463-469. · Zbl 0584.65090
[8] Lubich, C.; Discretized fractional calculus; SIAM J. Math. Anal.: 1986; Volume 17 ,704-719. · Zbl 0624.65015
[9] Diethelm, K.; Ford, J.M.; Ford, N.J.; Weilbeer, M.; Pitfalls in fast numerical solvers for fractional differential equations; J. Comput. Appl. Math.: 2006; Volume 186 ,482-503. · Zbl 1078.65550
[10] Galeone, L.; Garrappa, R.; Explicit methods for fractional differential equations and their stability properties; J. Comput. Appl. Math.: 2009; Volume 228 ,548-560. · Zbl 1169.65121
[11] Garrappa, R.; On some explicit Adams multistep methods for fractional differential equations; J. Comput. Appl. Math.: 2009; Volume 229 ,392-399. · Zbl 1171.65098
[12] Garrappa, R.; Popolizio, M.; On accurate product integration rules for linear fractional differential equations; J. Comput. Appl. Math.: 2011; Volume 235 ,1085-1097. · Zbl 1206.65176
[13] Garrappa, R.; Trapezoidal methods for fractional differential equations: Theoretical and computational aspects; Math. Comput. Simul.: 2015; Volume 110 ,96-112. · Zbl 1540.65194
[14] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.; Series on Complexity, Nonlinearity and Chaos; Fractional Calculus: Models and Numerical Methods: Singapore 2012; . · Zbl 1248.26011
[15] Luchko, Y.; Gorenflo, R.; An operational method for solving fractional differential equations with the Caputo derivatives; Acta Math. Vietnam.: 1999; Volume 24 ,207-233. · Zbl 0931.44003
[16] Diethelm, K.; Ford, N.J.; Multi-order Fractional Differential Equations and Their Numerical Solution; Appl. Math. Comput.: 2004; Volume 154 ,621-640. · Zbl 1060.65070
[17] Diethelm, K.; Luchko, Y.; Numerical solution of linear multi-term initial value problems of fractional order; J. Comput. Anal. Appl.: 2004; Volume 6 ,243-263. · Zbl 1083.65064
[18] Luchko, Y.; Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation; J. Math. Anal. Appl.: 2011; Volume 374 ,538-548. · Zbl 1202.35339
[19] Garrappa, R.; Stability-preserving high-order methods for multiterm fractional differential equations; Int. J. Bifurc. Chaos Appl. Sci. Eng.: 2012; Volume 22 ,1250073. · Zbl 1258.34011
[20] Al-Refai, M.; Luchko, Y.; Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives; Appl. Math. Comput.: 2015; Volume 257 ,40-51. · Zbl 1338.35457
[21] Garrappa, R.; Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial; 2017; . · Zbl 06916890
[22] Esmaeili, S.; The numerical solution of the Bagley-Torvik equation by exponential integrators; Sci. Iran.: 2017; ,2941-2951.
[23] Torvik, P.; Bagley, R.; On the appearance of the fractional derivative in the behavior of real materials; J. Appl. Mech. Trans. ASME: 1984; Volume 51 ,294-298. · Zbl 1203.74022
[24] Mainardi, F.; Fractional relaxation-oscillation and fractional diffusion-wave phenomena; Chaos Solitons Fractals: 1996; Volume 7 ,1461-1477. · Zbl 1080.26505
[25] Diethelm, K.; Ford, J.; Numerical Solution of the Bagley-Torvik Equation; BIT Numer. Math.: 2002; Volume 42 ,490-507. · Zbl 1035.65067
[26] Haubold, H.J.; Mathai, A.M.; Saxena, R.K.; Mittag-Leffler functions and their applications; J. Appl. Math.: 2011; ,298628. · Zbl 1218.33021
[27] Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.; ; Mittag-Leffler functions. Theory and Applications: Berlin, Germany 2014; . · Zbl 1309.33001
[28] Garrappa, R.; Popolizio, M.; Evaluation of generalized Mittag-Leffler functions on the real line; Adv. Comput. Math.: 2013; Volume 39 ,205-225. · Zbl 1272.33020
[29] Garrappa, R.; Numerical evaluation of two and three parameter Mittag-Leffler functions; SIAM J. Numer. Anal.: 2015; Volume 53 ,1350-1369. · Zbl 1331.33043
[30] Moret, I.; Novati, P.; On the Convergence of Krylov Subspace Methods for Matrix Mittag-Leffler Functions; SIAM J. Numer. Anal.: 2011; Volume 49 ,2144-2164. · Zbl 1244.65065
[31] Moret, I.; A note on Krylov methods for fractional evolution problems; Numer. Funct. Anal. Optim.: 2013; Volume 34 ,539-556. · Zbl 1272.65061
[32] Garrappa, R.; Popolizio, M.; Computing the matrix Mittag-Leffler function with applications to fractional calculus; ; . · Zbl 1272.33020
[33] Cameron, R.F.; McKee, S.; Product integration methods for second-kind Abel integral equations; J. Comput. Appl. Math.: 1984; Volume 11 ,1-10. · Zbl 0564.65085
[34] Diethelm, K.; Freed, A.D.; ; The FracPECE subroutine for the numerical solution of differential equations of fractional order: Goettingen, Germany 1999; ,57-71.
[35] Diethelm, K.; Ford, N.J.; Freed, A.D.; Detailed error analysis for a fractional Adams method; Numer. Algorithms: 2004; Volume 36 ,31-52. · Zbl 1055.65098
[36] Garrappa, R.; Messina, E.; Vecchio, A.; Effect of perturbation in the numerical solution of fractional differential equations; Discret. Contin. Dyn. Syst. Ser. B: 2017; . · Zbl 1402.65067
[37] Higham, N.J.; ; Functions of matrices: Philadelphia, PA, USA 2008; . · Zbl 1167.15001
[38] Garrappa, R.; Moret, I.; Popolizio, M.; Solving the time-fractional Schrödinger equation by Krylov projection methods; J. Comput. Phys.: 2015; Volume 293 ,115-134. · Zbl 1349.65547
[39] Garrappa, R.; Moret, I.; Popolizio, M.; On the time-fractional Schrödinger equation: Theoretical analysis and numerical solution by matrix Mittag-Leffler functions; Comput. Math. Appl.: 2017; Volume 5 ,977-992. · Zbl 1448.65099
[40] Mainardi, F.; Pironi, P.; Tampieri, F.; A numerical approach to the generalized Basset problem for a sphere accelerating in a viscous fluid; Proceedings of the 3rd Annual Conference of the Computational Fluid Dynamics Society of Canada: ; Volume Volume II ,105-112.
[41] Mainardi, F.; Pironi, P.; Tampieri, F.; On a generalization of the Basset problem via fractional calculus; Proceedings of the 15th Canadian Congress of Applied Mechanics: ; Volume Volume II ,836-837.
[42] Garrappa, R.; Mainardi, F.; Maione, G.; Models of dielectric relaxation based on completely monotone functions; Fract. Calc. Appl. Anal.: 2016; Volume 19 ,1105-1160. · Zbl 1499.78010
[43] Edwards, J.T.; Ford, N.J.; Simpson, A.C.; The numerical solution of linear multi-term fractional differential equations: Systems of equations; J. Comput. Appl. Math.: 2002; Volume 148 ,401-418. · Zbl 1019.65048
[44] Ford, N.J.; Connolly, J.A.; Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations; J. Comput. Appl. Math.: 2009; Volume 229 ,382-391. · Zbl 1166.65066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.