×

Transceiver design and power allocation for SWIPT in MIMO cognitive radio systems. (English) Zbl 1423.90049

Summary: In this paper, we consider a symmetric wireless communication network, i.e., each user is equipped with the same number of antennas. Specifically, this paper studies simultaneous wireless information and power transfer (SWIPT) in a \(K\)-user multiple-input multiple-output (MIMO) cognitive radio network where the secondary users (SUs) access the same frequency band as the pre-existing primary user (PU) without generating any interference. The transceivers and power splitting ratio are designed and power allocation is considered in our system model. To guarantee the signal-to-interference-plus-noise ratio (SINR) and harvested energy requirement of the PU, its optimal transceiver and minimal transmitted power are obtained by the technique of semi-definite relaxation (SDR). We design the beamformers of the SUs using the distance between the interference subspaces at the PU and the null space of PU’s desired signal to preserve the PU from the interference caused by the SUs. We aim to maximize the sum rate of all the SUs by jointly designing power splitting ratios and allocating transmission power. Furthermore, to consider the performance fairness of SUs, we propose another approach to maximize the minimum SINR of the SUs. Finally, numerical results are given to evaluate the performance of proposed approaches.

MSC:

90B18 Communication networks in operations research
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Software:

CVX

References:

[1] Valtchev, S.; Borge, B.V.; Brandisky, K.; Klaassens, J.B.; Efficient Resonant Inductive Coupling Energy Transfer Using New Magnetic and Design Criteria; Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference: ; ,1293-1298.
[2] Liu, H.; Maximizing Efficiency of Wireless Power Transfer with Resonant Inductive Coupling; 2011; .
[3] Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M.; Wireless power transfer via strongly coupled magnetic resonances; Science: 2007; Volume 317 ,83-86.
[4] Jonah, O.; Georgakopoulos, S.V.; Wireless Power Transfer in Concrete via Strongly Coupled Magnetic Resonance; IEEE Trans. Antennas Propag.: 2013; Volume 61 ,1378-1384.
[5] Varshney, L.R.; Transporting information and energy simultaneously; Proceedings of the 2008 IEEE International Symposium on Information Theory: ; ,1612-1616.
[6] Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z.; Wireless Networks with RF Energy Harvesting: A Contemporary Survey; IEEE Commun. Surv. Tutor.: 2015; Volume 17 ,757-789.
[7] Yang, D.; Wu, Q.; Zeng, Y.; Zhang, R.; Energy Tradeoff in Ground-to-UAV Communication via Trajectory Design; IEEE Trans. Veh. Technol.: 2018; Volume 67 ,6721-6726.
[8] Zhang, R.; Ho, C.K.; MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer; IEEE Trans. Wirel. Commun.: 2013; Volume 12 ,1989-2001.
[9] Liu, L.; Zhang, R.; Chua, K.C.; Wireless Information Transfer with Opportunistic Energy Harvesting; IEEE Trans. Wirel. Commun.: 2013; Volume 12 ,288-300.
[10] Ng, D.W.K.; Lo, E.S.; Schober, R.; Wireless Information and Power Transfer: Energy Efficiency Optimization in OFDMA Systems; IEEE Trans. Wirel. Commun.: 2013; Volume 12 ,6352-6370.
[11] Wen, Z.; Liu, X.; Zheng, S.; Guo, W.; Joint Source and Relay Design for MIMO Two-Way Relay Networks with SWIPT; IEEE Trans. Veh. Technol.: 2018; Volume 67 ,822-826.
[12] Shi, Q.; Liu, L.; Xu, W.; Zhang, R.; Joint Transmit Beamforming and Receive Power Splitting for MISO SWIPT Systems; IEEE Trans. Wirel. Commun.: 2014; Volume 13 ,3269-3280.
[13] Wang, F.; Peng, T.; Huang, Y.; Decentralized Robust Transceiver Designs for MISO SWIPT Interference Channel; IEEE Access: 2018; Volume 6 ,4537-4546.
[14] Zong, Z.; Feng, H.; Yu, F.R.; Zhao, N.; Yang, T.; Hu, B.; Optimal Transceiver Design for SWIPT in K-User MIMO Interference Channels; IEEE Trans. Wirel. Commun.: 2016; Volume 15 ,430-445.
[15] Zhao, M.; Cai, Y.; Shi, Q.; Hong, M.; Champagne, B.; Joint Transceiver Designs for Full-Duplex K-Pair MIMO Interference Channel with SWIPT; IEEE Trans. Commun.: 2017; Volume 65 ,890-905.
[16] Gomadam, K.; Cadambe, V.; Jafar, S.; A distributed numerical approach to interference alignment and applications to wireless interference networks; IEEE Trans. Inf. Theory: 2011; Volume 57 ,3309-3322. · Zbl 1365.94186
[17] Zhao, N.; Yu, F.R.; Leung, V.C.M.; Wireless energy harvesting in interference alignment networks; IEEE Commun. Mag.: 2015; Volume 53 ,72-78.
[18] Li, X.; Sun, Y.; Yu, F.R.; Zhao, N.; Antenna selection and power splitting for simultaneous wireless information and power transfer in interference alignment networks; Proceedings of the 2014 IEEE Global Communications Conference: ; ,2667-2672.
[19] Guo, J.; Zhao, N.; Yu, F.R.; Liu, X.; Leung, V.C.M.; Exploiting Adversarial Jamming Signals for Energy Harvesting in Interference Networks; IEEE Trans. Wirel. Commun.: 2017; Volume 16 ,1267-1280.
[20] Lunden, J.; Koivunen, V.; Huttunen, A.; Poor, H.V.; Collaborative Cyclostationary Spectrum Sensing for Cognitive Radio Systems; IEEE Trans. Signal Process.: 2009; Volume 57 ,4182-4195. · Zbl 1391.94024
[21] Lee, W.; Cho, D.; Enhanced Spectrum Sensing Scheme in Cognitive Radio Systems with MIMO Antennae; IEEE Trans. Veh. Technol.: 2011; Volume 60 ,1072-1085.
[22] Rossi, P.S.; Ciuonzo, D.; Romano, G.; Orthogonality and Cooperation in Collaborative Spectrum Sensing through MIMO Decision Fusion; IEEE Trans. Wirel. Commun.: 2013; Volume 12 ,5826-5836.
[23] Mohammad, F.R.; Ciuonzo, D.; Mohammed, Z.A.K.; Mean-Based Blind Hard Decision Fusion Rules; IEEE Signal Process. Lett.: 2018; Volume 25 ,630-634.
[24] Yang, Z.; Ding, Z.; Fan, P.; Karagiannidis, G.K.; Outage Performance of Cognitive Relay Networks with Wireless Information and Power Transfer; IEEE Trans. Veh. Technol.: 2016; Volume 65 ,3828-3833.
[25] Zhou, F.; Li, Z.; Cheng, J.; Li, Q.; Si, J.; Robust AN-Aided Beamforming and Power Splitting Design for Secure MISO Cognitive Radio with SWIPT; IEEE Trans. Wirel. Commun.: 2017; Volume 16 ,2450-2464.
[26] Tuan, P.V.; Koo, I.; Optimal Multiuser MISO Beamforming for Power-Splitting SWIPT Cognitive Radio Networks; IEEE Access: 2017; Volume 5 ,14141-14153.
[27] Xu, C.; Zhang, Q.; Li, Q.; Tan, Y.; Qin, J.; Robust Transceiver Design for Wireless Information and Power Transmission in Underlay MIMO Cognitive Radio Networks; IEEE Commun. Lett.: 2014; Volume 18 ,1665-1668.
[28] Fang, B.; Qian, Z.; Zhong, W.; Shao, W.; AN-Aided Secrecy Precoding for SWIPT in Cognitive MIMO Broadcast Channels; IEEE Commun. Lett.: 2015; Volume 19 ,1632-1635.
[29] Yuan, Y.; Ding, Z.; Outage Constrained Secrecy Rate Maximization Design with SWIPT in MIMO-CR Systems; IEEE Trans. Veh. Technol.: 2018; Volume 67 ,5475-5480.
[30] Wu, F.; Xiao, L.; Yang, D.; Cuthbert, L.; Liu, X.; Transceiver Designs for Interference Alignment Based Cognitive Radio Networks with Energy Harvesting; Wirel. Pers. Commun.: 2018; Volume 98 ,1895-1911.
[31] Grant, M.; Boyd, S.; ; CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 Beta: Austin, TX, USA 2013; .
[32] Rezaei, F.; Tadaion, A.; Sum-Rate Improvement in Cognitive Radio Through Interference Alignment; IEEE Trans. Veh. Technol.: 2016; Volume 65 ,145-154.
[33] Boshkovska, E.; Ng, D.W.K.; Zlatanov, N.; Schober, R.; Practical Non-Linear Energy Harvesting Model and Resource Allocation for SWIPT Systems; IEEE Commun. Lett.: 2015; Volume 19 ,2082-2085.
[34] Clerckx, B.; Bayguzina, E.; Waveform Design for Wireless Power Transfer; IEEE Trans. Signal Process.: 2016; Volume 64 ,6313-6328. · Zbl 1414.94138
[35] Zeng, Y.; Clerckx, B.; Zhang, R.; Communications and Signals Design for Wireless Power Transmission; IEEE Trans. Commun.: 2017; Volume 65 ,2264-2290.
[36] Boyd, S.; Vandenberghe, L.; ; Convex Optimization: Cambridge, UK 2004; . · Zbl 1058.90049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.