×

A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients. (English) Zbl 1423.35086

Summary: We consider weak solutions of second-order partial differential equations of Kolmogorov-Fokker-Planck-type with measurable coefficients in the form \[ \partial_tu+\langle v,\nabla_xu\rangle=\operatorname{div}_v(A(v,x,t)\nabla_vu)+\langle b(v,x,t),\nabla_vu\rangle+f,\quad (v,x,t)\in\mathbb{R}^{2n+1}, \] where \(A\) is a symmetric uniformly positive definite matrix with bounded measurable coefficients; \(f\) and the components of the vector \(b\) are bounded and measurable functions. We give a geometric statement of the Harnack inequality recently proved by F. Golse et al. [Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19, No. 1, 253–295 (2019; Zbl 1431.35016)]. As a corollary, we obtain a strong maximum principle.

MSC:

35H20 Subelliptic equations
35K70 Ultraparabolic equations, pseudoparabolic equations, etc.
35B65 Smoothness and regularity of solutions to PDEs
35Q84 Fokker-Planck equations

Citations:

Zbl 1431.35016

References:

[1] F. Abedin and G. Tralli, Harnack inequality for a class of Kolmogorov-Fokker-Planck equations in non-divergence form; arXiv:1801.0396. · Zbl 1416.35050
[2] Alziary, B., Décamps, J. P. and Koehl, P. F., A P.D.E. approach to Asian options: Analytical and numerical evidence, J. Bank. Finance21 (1997) 613-640.
[3] Amano, K., Maximum principles for degenerate elliptic-parabolic operators, Indiana Univ. Math. J.28(4) (1979) 545-557. · Zbl 0423.35023
[4] Barraquand, J. and Pudet, T., Pricing of American path-dependent contingent claims, Math. Finance6 (1996) 17-51. · Zbl 0919.90005
[5] Barucci, E., Polidoro, S. and Vespri, V., Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci.11 (2001) 475-497. · Zbl 1034.35166
[6] Bony, J.-M., Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble)19(1) (1969) 277-304. · Zbl 0176.09703
[7] Boscain, U. and Polidoro, S., Gaussian estimates for hypoelliptic operators via optimal control, Rend. Lincei Mat. Appl.18 (2007) 333-342. · Zbl 1146.35026
[8] Chandresekhar, S., Stochastic problems in physics and astronomy, Rev. Mod. Phys.15 (1943) 1-89. · Zbl 0061.46403
[9] Chapman, S. and Cowling, T. G., The Mathematical Theory of Nonuniform Gases, 3rd edition (Cambridge University Press, Cambridge, 1990). · Zbl 0049.26102
[10] G. Cibelli, S. Polidoro and F. Rossi, Sharp estimates for Geman-Yor processes and application to arithmetic average asian options, to appear in Journal de Mathématiques Pures et Appliquées, preprint; arXiv:1610.07838v2. · Zbl 1423.35196
[11] Cinti, C., Nyström, K. and Polidoro, S., A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators, Potential Anal.33 (2010) 341-354. · Zbl 1207.35102
[12] Cinti, C., Pascucci, A. and Polidoro, S., Pointwise estimates for a class of nonhomogeneous Kolmogorov equations, Math. Ann.340 (2008) 237-264. · Zbl 1162.35015
[13] Cinti, C. and Polidoro, S., Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, J. Math. Anal. Appl.338 (2008) 946-969. · Zbl 1152.35062
[14] Delarue, F. and Menozzi, S., Density estimates for a random noise propagating through a chain of differential equations, J. Funct. Anal.259 (2010) 1577-1630. · Zbl 1223.60037
[15] Di Francesco, M. and Pascucci, A., On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express2005(5) (2005) 77-116. · Zbl 1085.35086
[16] Di Francesco, M. and Polidoro, S., Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differential Equations11 (2006) 1261-1320. · Zbl 1153.35312
[17] Duderstadt, J. J. and Martin, W. R., Transport Theory (John Wiley & Sons, New York-Chichester-Brisbane, 1979). · Zbl 0407.76001
[18] Eidelman, S. D., Ivasyshen, S. D. and Malytska, H. P., A modified Levi method: Development and application, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki5 (1998) 14-19. · Zbl 0912.35093
[19] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat.13 (1975) 161-207. · Zbl 0312.35026
[20] F. Golse, C. Imbert, C. Mouhot and A. Vasseur, Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5); doi: 10.2422/2036-2145.201702_001, preprint. · Zbl 1431.35016
[21] Hörmander, L., Hypoelliptic second-order differential equations, Acta Math.119 (1967) 147-171. · Zbl 0156.10701
[22] Il’in, A. M., On a class of ultraparabolic equations, Dokl. Akad. Nauk SSSR159 (1964) 1214-1217. · Zbl 0090.03602
[23] Kogoj, A. and Polidoro, S., Harnack inequality for hypoelliptic second-order partial differential operators, Potential Anal.45(3) (2016) 545-555. · Zbl 1361.35048
[24] Kolmogorov, A., Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung), Ann. of Math. (2)35 (1934) 116-117. · Zbl 0008.39906
[25] Lanconelli, A. and Pascucci, A., Nash estimates and upper bounds for nonhomogeneous Kolmogorov equations, Potential Anal.47(4) (2017) 461-483; https://doi.org/10.1007/s11118-017-9622-1 · Zbl 1383.35105
[26] A. Lanconelli, A. Pascucci and S. Polidoro, Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients; arXiv:1704.07307v1. · Zbl 1032.35114
[27] Lanconelli, E. and Polidoro, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino52 (1994) 29-63. · Zbl 0811.35018
[28] Lee, E. B. and Markus, L., Foundations of Optimal Control Theory (John Wiley & Sons Inc., New York, 1967), x+576 pp. · Zbl 0159.13201
[29] Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \(\mathbb{R}^N\), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 133-164. · Zbl 0887.35062
[30] Manfredini, M., The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations2 (1997) 831-866. · Zbl 1023.35518
[31] D. Morbidelli, Spazi frazionari di tipo Sobolev per campi vettoriali e operatori di evoluzione di tipo Kolmogorov-Fokker-Planck, Tesi di Dottorato di Ricerca, Università di Bologna (1998).
[32] Moser, J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964) 101-134. · Zbl 0149.06902
[33] Moser, J., Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math.20 (1967) 231-236. · Zbl 0149.07001
[34] Nagel, A., Stein, E. M. and Wainger, S., Balls and metrics defined by vector fields. I. Basic properties, Acta Math.155 (1985) 103-147. · Zbl 0578.32044
[35] Pascucci, A., PDE and Martingale Methods in Option Pricing (Springer-Verlag, Milan, 2011). · Zbl 1214.91002
[36] Pascucci, A. and Polidoro, S., On the Harnack inequality for a class of hypoelliptic evolution equations, Trans. Amer. Math. Soc.356(11) (2004) 4383-4394. · Zbl 1049.35119
[37] Polidoro, S., On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type, Matematiche (Catania)49 (1994) 53-105. · Zbl 0845.35059
[38] Polidoro, S., A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck equations, Arch. Ration. Mech. Anal.137 (1997) 321-340. · Zbl 0887.35086
[39] Rothschild, L. P. and Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math.137 (1976) 247-320. · Zbl 0346.35030
[40] Satyro, J. I., The smoothness of the solutions of certain degenerate second-order equations, Mat. Zametki10 (1971) 101-111.
[41] Wang, W. and Zhang, L., The \(\mathcal{C}^\alpha\) regularity of weak solutions of a class of non-homogeneous ultraparabolic equations, Sci. China Ser. A52 (2009) 1589-1606. · Zbl 1181.35139
[42] Wang, W. and Zhang, L., The \(\mathcal{C}^\alpha\) regularity of weak solutions of ultraparabolic equations, Discrete Contin. Dyn. Syst.29 (2011) 1261-1275. · Zbl 1209.35072
[43] Weber, M., The fundamental solution of a degenerate partial differential equation of parabolic type, Trans. Amer. Math. Soc.71 (1951) 24-37. · Zbl 0043.09901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.