×

Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators. (English) Zbl 1152.35062

In this paper the authors consider a class of second order ultraparabolic differential equations of the form \[ L_Au:=\sum_{j,k=1}^mX_j(a_{jk}X_ku)+X_0u-\partial_tu=0, \] where \(A=(a_{jk})\) is a bounded symmetric, uniformly positive matrix, the operator \[ \sum_{j=1}^mX_j^2+X_0-\partial_t \] is supposed to be hypoelliptic, and where the (smooth) vectors fields \(X_1,\ldots,X_m\) and \(Y:=X_0-\partial_t\) are supposed to be invariant with respect to a suitable homogeneous Lie group \(G\). In the assumption that the entries \(a_{jk}\) be measurable, the authors adapt Moser’s iterative method to the non-Euclidean geometry of \(G\) to prove an \(L^\infty_{\text{loc}}\) bound of the solution \(u\) in terms of the \(L^p_{\text{loc}}\) norm of \(u.\) They next prove a pointwise upper bound for the fundamental solution of \(L_A\) given in terms of the value-function of an optimal control problem related to the vector fields \(X_1,\ldots,X_m,Y\), and finally, on supposing that the entries \(a_{jk}\) be smooth, they show the existence of the fundamental solution of \(L_A\), giving a precise description of its properties.

MSC:

35K70 Ultraparabolic equations, pseudoparabolic equations, etc.
35A08 Fundamental solutions to PDEs
35H20 Subelliptic equations
Full Text: DOI

References:

[1] Aronson, D. G., Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. (N.S.), 73, 890-896 (1967) · Zbl 0153.42002
[2] Bardi, M.; Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Found. Appl. (1997), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA, With appendices by Maurizio Falcone and Pierpaolo Soravia · Zbl 0890.49011
[3] Barucci, E.; Polidoro, S.; Vespri, V., Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., 11, 475-497 (2001) · Zbl 1034.35166
[4] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monogr. Math., in press; A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monogr. Math., in press · Zbl 1128.43001
[5] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Fundamental solutions for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., 356, 2709-2737 (2004) · Zbl 1072.35011
[6] Bonfiglioli, A.; Uguzzoni, F., Harnack inequality for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., 359, 2463-2481 (2007) · Zbl 1113.35032
[7] U. Boscain, S. Polidoro, Gaussian estimates for hypoelliptic operators via optimal control, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. (2007), in press; U. Boscain, S. Polidoro, Gaussian estimates for hypoelliptic operators via optimal control, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. (2007), in press · Zbl 1146.35026
[8] Bramanti, M.; Brandolini, L., \(L^p\) estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups, Rend. Sem. Mat. Univ. Politec. Torino, 58, 389-433 (2000) · Zbl 1072.35058
[9] M. Bramanti, L. Brandolini, E. Lanconelli, F. Uguzzoni, Non-divergence equations structured on Hörmander vector fields: Heat kernels and Harnack inequalities, preprint; M. Bramanti, L. Brandolini, E. Lanconelli, F. Uguzzoni, Non-divergence equations structured on Hörmander vector fields: Heat kernels and Harnack inequalities, preprint · Zbl 1218.35001
[10] Bramanti, M.; Brandolini, L.; Lanconelli, E.; Uguzzoni, F., Heat kernels for non-divergence operators of Hörmander type, C. R. Math. Acad. Sci. Paris, 343, 463-466 (2006) · Zbl 1109.35008
[11] Cannarsa, P.; Rifford, L., Semiconcavinty results for optimal control problems admitting no singular minimizing controls, preprint, 2006; available online at: · Zbl 1145.49022
[12] Capogna, L.; Danielli, D.; Garofalo, N., An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations, 18, 1765-1794 (1993) · Zbl 0802.35024
[13] Cercignani, C., The Boltzmann Equation and Its Applications (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0646.76001
[14] C. Cinti, A. Pascucci, S. Polidoro, Pointwise estimates for solutions to a class of non-homogeneous Kolmogorov equations, Math. Ann. (2007), in press; C. Cinti, A. Pascucci, S. Polidoro, Pointwise estimates for solutions to a class of non-homogeneous Kolmogorov equations, Math. Ann. (2007), in press · Zbl 1162.35015
[15] Desvillettes, L.; Villani, C., On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54, 1-42 (2001) · Zbl 1029.82032
[16] Di Francesco, M.; Pascucci, A., On the complete model with stochastic volatility by Hobson and Rogers, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460, 3327-3338 (2004) · Zbl 1092.91024
[17] Di Francesco, M.; Polidoro, S., Harnack inequality for a class of degenerate parabolic equations of Kolmogorov type, Adv. Differential Equations, 11, 1261-1320 (2006) · Zbl 1153.35312
[18] Eidelman, S. D.; Ivasyshen, S. D.; Malytska, H. P., A modified Levi method: Development and application, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 5, 14-19 (1998) · Zbl 0912.35093
[19] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 161-207 (1975) · Zbl 0312.35026
[20] Hajłasz, P.; Koskela, P., Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, x+101 (2000) · Zbl 0954.46022
[21] Hobson, D. G.; Rogers, L. C.G., Complete models with stochastic volatility, Math. Finance, 8, 27-48 (1998) · Zbl 0908.90012
[22] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701
[23] Il’in, A. M., On a class of ultraparabolic equations, Dokl. Akad. Nauk SSSR, 159, 1214-1217 (1964) · Zbl 0173.37702
[24] Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J., 53, 503-523 (1986) · Zbl 0614.35066
[25] Kogoj, A. E.; Lanconelli, E., An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., 1, 51-80 (2004) · Zbl 1150.35354
[26] Kogoj, A. E.; Lanconelli, E., Link of groups and homogeneous Hörmander operators, Proc. Amer. Math. Soc., 135, 2019-2030 (2007) · Zbl 1170.35034
[27] Kupcov, L. P., The fundamental solutions of a certain class of elliptic-parabolic second order equations, Differ. Uravn., 8, 1649-1660 (1972), 1716 · Zbl 0253.35043
[28] Kusuoka, S.; Stroock, D., Applications of the Malliavin calculus. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34, 391-442 (1987) · Zbl 0633.60078
[29] Lanconelli, E.; Pascucci, A., On the fundamental solution for hypoelliptic second order partial differential equations with non-negative characteristic form, Ricerche Mat., 48, 81-106 (1999) · Zbl 0965.35005
[30] Lanconelli, E.; Polidoro, S., On a class of hypoelliptic evolution operators, Partial Differential Equations, II. Partial Differential Equations, II, Turin, 1993. Partial Differential Equations, II. Partial Differential Equations, II, Turin, 1993, Rend. Sem. Mat. Univ. Politec. Torino, 52, 29-63 (1994) · Zbl 0811.35018
[31] Lions, P.-L., On Boltzmann and Landau equations, Philos. Trans. R. Soc. Lond. Ser. A, 346, 191-204 (1994) · Zbl 0809.35137
[32] Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \(R^N\), Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 24, 133-164 (1997) · Zbl 0887.35062
[33] Manfredini, M., The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations, 2, 831-866 (1997) · Zbl 1023.35518
[34] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13, 457-468 (1960) · Zbl 0111.09301
[35] Moser, J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17, 101-134 (1964) · Zbl 0149.06902
[36] Moser, J., On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math., 24, 727-740 (1971) · Zbl 0227.35016
[37] Nash, J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80, 931-954 (1958) · Zbl 0096.06902
[38] Oleıˇnik, O. A.; Radkevič, E. V., Second Order Equations with Nonnegative Characteristic Form (1973), Plenum Press: Plenum Press New York
[39] Pascucci, A.; Polidoro, S., A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations, J. Math. Anal. Appl., 282, 396-409 (2003) · Zbl 1026.35056
[40] Pascucci, A.; Polidoro, S., The Moser’s iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6, 395-417 (2004) · Zbl 1096.35080
[41] Polidoro, S., On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type, Matematiche (Catania), 49, 53-105 (1994) · Zbl 0845.35059
[42] Polidoro, S., A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck equations, Arch. Ration. Mech. Anal., 137, 321-340 (1997) · Zbl 0887.35086
[43] Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0665.60084
[44] Rothschild, L. P.; Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 247-320 (1976) · Zbl 0346.35030
[45] Saloff-Coste, L.; Stroock, D. W., Opérateurs uniformément sous-elliptiques sur les groupes de Lie, J. Funct. Anal., 98, 97-121 (1991) · Zbl 0734.58041
[46] Šatyro, J. I., The smoothness of the solutions of certain degenerate second order equations, Mat. Zametki, 10, 101-111 (1971) · Zbl 0216.12202
[47] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Ser., vol. 43 (1993), Princeton University Press: Princeton University Press Princeton, NJ, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III · Zbl 0821.42001
[48] Varopoulos, N. T.; Saloff-Coste, L.; Coulhon, T., Analysis and Geometry on Groups, Cambridge Tracts in Math., vol. 100 (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0813.22003
[49] Weber, M., The fundamental solution of a degenerate partial differential equation of parabolic type, Trans. Amer. Math. Soc., 71, 24-37 (1951) · Zbl 0043.09901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.