×

On the anticyclotomic Iwasawa main conjecture for modular forms. (English) Zbl 1326.11067

In the paper under review the authors generalize the work of M. Bertolini and H. Darmon [Ann. Math. (2) 162, No. 1, 1–64 (2005; Zbl 1093.11037)] on the anticyclotomic main conjecture for elliptic curves to modular forms of higher weight.
More precisely, let \(f \in S_k(\Gamma_0(N))\) be an elliptic newform of level \(N\). Let \(K\) be an imaginary quadratic field with discriminant \(D_K\). As usual one decomposes \(N\) as \(N = N^+ N^-\), where \(N^+\) is only divisible by primes split in \(K\) and \(N^-\) is only divisible by primes which are inert or ramified in \(K\). The authors assume that \(N^-\) is a square-free product of an odd number of inert primes.
Let \(p \nmid N D_K\) be a prime and suppose that \(f\) is \(p\)-ordinary. One can associate to \(f\) a certain two-dimensional (over the Hecke field of \(f\)) self-dual Galois representation \(V_f\) and a (minimal) Selmer group \(\mathrm{Sel}(K_{\infty}, V_f / T_f)\), where \(K_{\infty}\) is the anticyclotomic \(\mathbb Z_p\)-extension of \(K\) and \(T_f \subset V_f\) is a Galois stable lattice. The Pontryagin dual \(\mathrm{Sel}(K_{\infty}, V_f / T_f)^{\vee}\) is known to be a finitely generated Iwaswa module.
The main result of this article now states that the characteristic ideal of \(\mathrm{Sel}(K_{\infty}, V_f / T_f)^{\vee}\) contains the \(p\)-adic \(L\)-series \(L_p(K_{\infty}, f)\) under certain hypotheses. As a corollary, one obtains that the \(\mu\)-invariant of \(\mathrm{Sel}(K_{\infty}, V_f / T_f)^{\vee}\) vanishes in this situation. The \(p\)-adic \(L\)-series has been considered in the author’s article [“Special values of anticyclotomic \(L\)-functions for modular forms”, Preprint, arXiv:1204.2427], where almost the same hypotheses already appear. Note that the case \(k=2\) of the main theorem recovers the result of Bertolini and Darmon mentioned above.
The prove heavily relies on the existence of a certain Euler system constructed via level-raising. The heart of the paper is then devoted to establishing a connection between this Euler system an the \(p\)-adic \(L\)-function.
As the authors point out it seems to be likely that the other divisibility follows from work of C. Skinner and E. Urban [Invent. Math. 195, No. 1, 1–277 (2014; Zbl 1301.11074)].

MSC:

11R23 Iwasawa theory
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

References:

[1] doi:10.1007/s00222-013-0448-1 · Zbl 1301.11074 · doi:10.1007/s00222-013-0448-1
[2] doi:10.1215/S0012-7094-03-11622-1 · Zbl 1065.11048 · doi:10.1215/S0012-7094-03-11622-1
[3] doi:10.2140/pjm.1997.181.277 · doi:10.2140/pjm.1997.181.277
[4] doi:10.1007/BF01231195 · Zbl 0773.11039 · doi:10.1007/BF01231195
[5] doi:10.1112/S0010437X11005318 · Zbl 1259.11101 · doi:10.1112/S0010437X11005318
[6] doi:10.4153/CJM-2011-077-6 · Zbl 1332.11063 · doi:10.4153/CJM-2011-077-6
[8] doi:10.1007/s00229-010-0409-6 · Zbl 1320.11054 · doi:10.1007/s00229-010-0409-6
[10] doi:10.1090/conm/245/03718 · doi:10.1090/conm/245/03718
[12] doi:10.2307/1971444 · Zbl 0658.10034 · doi:10.2307/1971444
[13] doi:10.1007/BFb0093453 · doi:10.1007/BFb0093453
[15] doi:10.1007/978-3-642-51438-8 · doi:10.1007/978-3-642-51438-8
[16] doi:10.1007/BF01231768 · Zbl 0847.11025 · doi:10.1007/BF01231768
[18] doi:10.4007/annals.2005.162.1 · Zbl 1093.11037 · doi:10.4007/annals.2005.162.1
[19] doi:10.1215/S0012-7094-94-07604-7 · Zbl 0853.14013 · doi:10.1215/S0012-7094-94-07604-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.