In this paper, the Lie symmetry analysis method is employed to investigate the Lie point symmetries and the one-parameter transformation groups of a (2 + 1)-dimensional Boiti-Leon-Pempinelli system. By using Ibragimov’s method, the optimal system of one-dimensional subalgebras of this system is constructed. Truncated Painlevé analysis is used for deriving the Bäcklund transformation. The method of constructing lump-type solutions of integrable equations by means of Bäcklund transformation is first presented. Meanwhile, the lump-type solutions of the (2 + 1)-dimensional Boiti-Leon-Pempinelli system are obtained. The lump-type wave is one kind of rogue wave. The fusion-type N-solitary wave solutions are also constructed. In addition, this system is integrable in terms of the consistent Riccati expansion method.

1.
P. J.
Olver
,
Application of Lie Group to Differential Equations
(
Springer
,
1993
).
2.
G. W.
Bluman
and
S. C.
Anco
,
Symmetry and Integration Methods for Differential Equations
(
Springer
,
2002
).
3.
G. W.
Bluman
,
A. F.
Cheviakov
, and
S. C.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
(
Springer
,
2010
).
4.
G. W.
Bluman
and
A. F.
Cheviakov
, “
Framework for potential systems and nonlocal symmetries: Algorithmic approach
,”
J. Math. Phys.
46
(
12
),
123506
(
2005
).
5.
G. W.
Bluman
,
A. F.
Cheviakov
, and
N. M.
Ivanova
, “
Framework for nonlocally related partial differential equation systems and nonlocal symmetries: Extension, simplification, and examples
,”
J. Math. Phys.
47
(
11
),
113505
(
2006
).
6.
N. H.
Ibragimov
, “
A new conservation theorem
,”
J. Math. Anal. Appl.
333
(
1
),
311
328
(
2007
).
7.
N. H.
Ibragimov
, “
Nonlinear self-adjointness in constructing conservation laws
,” e-print arXiv:1109.1728 (
2011
).
8.
W. X.
Ma
, “
Conservation laws of discrete evolution equations by symmetries and adjoint symmetries
,”
Symmetry
7
(
2
),
714
725
(
2015
).
9.
L. V.
Ovsyannikov
,
Group Properties of Differential Equations
(
Siberian Branch, USSR Academy of Sciences
,
Novosibirsk
,
1962
).
10.
X. R.
Hu
,
Y. Q.
Li
, and
Y.
Chen
, “
A direct algorithm of one-dimensional optimal system for the group invariant solutions
,”
J. Math. Phys.
56
(
5
),
053504
(
2015
).
11.
N. H.
Ibragimov
, “
Optimal system of invariant solutions for the Burgers equation
,” in
2nd Conference on Non-Linear Science and Complexity: Session MOGRAN XII
,
Portugal
,
2008
.
12.
Y. N.
Grigoriev
,
N. H.
Ibragimov
,
V. F.
Kovalev
, and
S. V.
Meleshko
,
Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics
(
Springer
,
2010
).
13.
M. A.
Abdulwahhab
, “
Optimal system and exact solutions for the generalized system of 2-dimensional Burgers equations with infinite Reynolds number
,”
Commun. Nonlinear Sci. Numer. Simul.
20
(
1
),
98
112
(
2015
).
14.
M. A.
Abdulwahhab
, “
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
,”
Commun. Nonlinear Sci. Numer. Simul.
39
,
283
299
(
2016
).
15.
Z. L.
Zhao
and
B.
Han
, “
Lie symmetry analysis of the Heisenberg equation
,”
Commun. Nonlinear Sci. Numer. Simul.
45
,
220
234
(
2017
).
16.
Z. L.
Zhao
and
B.
Han
, “
On symmetry analysis and conservation laws of the AKNS system
,”
Z. Naturforsch. A
71
,
741
750
(
2016
).
17.
Z. L.
Zhao
and
B.
Han
, “
On optimal system, exact solutions and conservation laws of the Broer-Kaup system
,”
Eur. Phys. J. Plus
130
(
11
),
1
15
(
2015
).
18.
N. A.
Kudryashov
, “
Painlevé analysis and exact solutions of the fourth-order equation for description of nonlinear waves
,”
Commun. Nonlinear Sci. Numer. Simul.
28
(
1-3
),
1
9
(
2015
).
19.
N. A.
Kudryashov
and
Y. S.
Ivanova
, “
Painlevé analysis and exact solutions for the modified Korteweg-de Vries equation with polynomial source
,”
Appl. Math. Comput.
273
,
377
382
(
2016
).
20.
S. Y.
Lou
, “
Residual symmetries and Bäcklund transformations
,” e-print arXiv:1308.1140v1 (
2013
).
21.
S. Y.
Lou
, “
Consistent Riccati expansion for integrable systems
,”
Stud. Appl. Math.
134
(
3
),
372
402
(
2015
).
22.
M.
Boiti
,
J. J.-P.
Leon
, and
F.
Pempinelli
, “
Integrable two-dimensional generalisation of the sine- and sinh-Gordon equations
,”
Inverse Probl.
3
(
1
),
37
(
1987
).
23.
C. Q.
Dai
and
Y. Y.
Wang
, “
Periodic structures based on variable separation solution of the (2+1)-dimensional Boiti-Leon-Pempinelli equation
,”
Chaos, Solitons Fractals
39
(
1
),
350
355
(
2009
).
24.
A. M.
Wazwaz
and
M. S.
Mehanna
, “
A variety of exact travelling wave solutions for the (2+1)-dimensional Boiti-Leon-Pempinelli equation
,”
Appl. Math. Comput.
217
(
4
),
1484
1490
(
2010
).
25.
C. Q.
Dai
and
Y. Y.
Wang
, “
Localized coherent structures based on variable separation solution of the (2+1)-dimensional Boiti-Leon-Pempinelli equation
,”
Nonlinear Dyn.
70
(
1
),
189
196
(
2012
).
26.
W. X.
Ma
, “
Diversity of exact solutions to a restricted Boiti–Leon–Pempinelli dispersive long-wave system
,”
Phys. Lett. A
319
(
3-4
),
325
333
(
2003
).
27.
J. X.
Fei
,
Z. Y.
Ma
, and
Y. M.
Chen
, “
Symmetry reduction and explicit solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli system
,”
Appl. Math. Comput.
268
,
432
438
(
2015
).
28.
Y. H.
Wang
and
H.
Wang
, “
Symmetry analysis and CTE solvability for the (2+1)-dimensional Boiti-Leon-Pempinelli equation
,”
Phys. Scr.
89
(
12
),
125203
(
2014
).
29.
M.
Kumar
,
R.
Kumar
, and
A.
Kumar
, “
Some more similarity solutions of the (2+1)-dimensional BLP system
,”
Comput. Math. Appl.
70
(
3
),
212
221
(
2015
).
30.
Y. H.
Hu
and
Z. Y.
Ma
, “
Folded solitary waves of the Boiti-Leon-Pempinelli system
,”
Nonlinear Dyn.
85
(
2
),
941
947
(
2016
).
31.
W. X.
Ma
, “
Lump solutions to the Kadomtsev-Petviashvili equation
,”
Phys. Lett. A
379
(
36
),
1975
1978
(
2015
).
32.
W. X.
Ma
,
Z. Y.
Qin
, and
X.
, “
Lump solutions to dimensionally reduced p-gKP and p-gBKP equations
,”
Nonlinear Dyn.
84
(
2
),
923
931
(
2016
).
33.
W. X.
Ma
,
Y.
Zhou
, and
R.
Dougherty
, “
Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations
,”
Int. J. Mod. Phys. B
30
,
1640018
(
2016
).
34.
S.
Wang
,
X. Y.
Tang
, and
S. Y.
Lou
, “
Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation
,”
Chaos, Solitons Fractals
21
(
1
),
231
239
(
2004
).
35.
Y.
Chen
,
E. G.
Fan
, and
M. W.
Yuen
, “
The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system
,”
Phys. Lett. A
380
(
1-2
),
9
14
(
2016
).
36.
Y. F.
Wang
,
B.
Tian
, and
Y.
Jiang
, “
Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids
,”
Appl. Math. Comput.
292
,
448
456
(
2017
).
37.
W. X.
Ma
and
B.
Fuchssteiner
, “
Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation
,”
Int. J. Non-Linear Mech.
31
(
3
),
329
338
(
1996
).
38.
W. X.
Ma
, “
A refined invariant subspace method and applications to evolution equations
,”
Sci. China Math.
55
(
9
),
1769
1778
(
2012
).
You do not currently have access to this content.