×

A limiting free boundary problem with gradient constraint and tug-of-war games. (English) Zbl 1422.35088

Summary: In this manuscript we deal with regularity issues and the asymptotic behaviour (as \(p \rightarrow \infty \)) of solutions for elliptic free boundary problems of \(p\)-Laplacian type (\(2 \le p< \infty \)):
\[-\Delta _p u(x) + \lambda _0(x)\chi _{\{u>0\}}(x) = 0 \quad \text{in} \quad \Omega \subset{\mathbb{R}}^N, \] with a prescribed Dirichlet boundary data, where \(\lambda _0>0\) is a bounded function and \(\Omega \) is a regular domain. First, we prove the convergence as \(p\rightarrow \infty \) of any family of solutions \((u_p)_{p\ge 2}\), as well as we obtain the corresponding limit operator (in non-divergence form) ruling the limit equation, \[\begin{cases} \max \left\{ -\Delta _{\infty } u_{\infty }, \,\, -|\nabla u_{\infty }| + \chi _{\{u_{\infty }>0\}}\right\}&= 0 \text{ in }\Omega \cap \{u_{\infty } \ge 0\} \\ u_{\infty }& =F \text{ on } \partial \Omega . \end{cases} \]Next, we obtain uniqueness for solutions to this limit problem. Finally, we show that any solution to the limit operator is a limit of value functions for a specific Tug-of-War game.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R35 Free boundary problems for PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
91A99 Game theory

References:

[1] Alt, H.W., Phillips, D.: A free boundary problem for semilinear elliptic equations. J. Reine Angew. Math. 368, 63-107 (1986) · Zbl 0598.35132
[2] Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41(4), 439-505 (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[3] Blanc, P., Pinasco, J.P., Rossi, J.D.: Maximal operators for the \[p-\] p-Laplacian family. Pac. J. Math. 287(2), 257-295 (2017) · Zbl 1362.35143 · doi:10.2140/pjm.2017.287.257
[4] Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Part. Differ. Equ. 13(2), 123-139 (2001) · Zbl 0996.49019
[5] Crandall, M.G., Gunnarsson, G., Wang, P.Y.: Uniqueness of \[\infty -\]∞-harmonic functions and the eikonal equation. Comm. Part. Differ. Equ. 32(10-12), 1587-1615 (2007) · Zbl 1135.35048 · doi:10.1080/03605300601088807
[6] Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[7] da Silva, J.V., Rossi, J.D., Salort, A.: Maximal solutions for the \[\infty -\]∞-eigenvalue problem. Adv. Calc. Var. https://doi.org/10.1515/acv-2017-0024 (to appear) · Zbl 1414.35077
[8] Díaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries Vol. I. Elliptic equations. Research Notes in Mathematics, 106. Pitman (Advanced Publishing Program), Boston, MA, 1985. vii+323 pp. ISBN: 0-273-08572-7 · Zbl 0595.35100
[9] Evans, L.C., Smart, C.K.: Everywhere differentiability of infinity harmonic functions. Calc. Var. Part. Differ. Equ. 42(1-2), 289-299 (2011) · Zbl 1251.49034 · doi:10.1007/s00526-010-0388-1
[10] Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1), 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[11] Juutinen, P., Lindqvist, P., Manfredi, J.J.: The \[\infty \]∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148(2), 89-105 (1999) · Zbl 0947.35104 · doi:10.1007/s002050050157
[12] Juutinen, P., Parviainen, M., Rossi, J.D.: Discontinuous gradient constraints and the infinity Laplacian. Int. Math. Res. Not. IMRN 8, 2451-2492 (2016) · Zbl 1404.35175 · doi:10.1093/imrn/rnv214
[13] Karp, L., Kilpeläinen, T., Petrosyan, A., Shahgholian, H.: On the porosity of free boundaries in degenerate variational inequalities. J. Differ. Equ. 164(1), 110-117 (2000) · Zbl 0956.35054 · doi:10.1006/jdeq.1999.3754
[14] Koskela, P., Rohde, S.: Hausdorff dimension and mean porosity. Math. Ann. 309(4), 593-609 (1997) · Zbl 0890.30013 · doi:10.1007/s002080050129
[15] Lee, K.-A., Shahgholian, H.: Hausdorff measure and stability for the \[p\] p-obstacle problem \[(2 < p < \infty )\](2<p<∞). J. Differ. Equ. 195(1), 14-24 (2003) · Zbl 1133.35443 · doi:10.1016/j.jde.2003.06.002
[16] Lindqvist, P., Lukkari, T.: A curious equation involving the \[\infty \]∞-Laplacian. Adv. Calc. Var. 3(4), 409-421 (2010) · Zbl 1200.49026 · doi:10.1515/acv.2010.017
[17] Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for \[p-\] p-harmonic functions. Proc. Am. Math. Soc. 138(3), 881-889 (2010) · Zbl 1187.35115 · doi:10.1090/S0002-9939-09-10183-1
[18] Manfredi, J.J., Parviainen, M., Rossi, J.D.: On the definition and properties of \[p\] p-harmonious functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2), 215-241 (2012) · Zbl 1252.91014
[19] Manfredi, J.J.: Regularity for minima of functionals with \[p\] p-growth. J. Differ. Equ. 76(2), 203-212 (1988) · Zbl 0674.35008 · doi:10.1016/0022-0396(88)90070-8
[20] Peres, Y., Schramm, O., Sheffield, S., Wilson, D.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22(1), 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[21] Rossi, J.D., Teixeira, E.V.: A limiting free boundary problem ruled by Aronsson’s equation. Trans. Am. Math. Soc. 364(2), 703-719 (2012) · Zbl 1236.35210 · doi:10.1090/S0002-9947-2011-05322-5
[22] Rossi, J.D., Teixeira, E.V., Urbano, J.M.: Optimal regularity at the free boundary for the infinity obstacle problem. Interfaces Free Bound 17(3), 381-398 (2015) · Zbl 1439.35580 · doi:10.4171/IFB/347
[23] Rossi, J.D., Wang, P.: The limit as \[p \rightarrow \infty\] p→∞ in a two-phase free boundary problem for the \[p\] p-Laplacian. Interfaces Free Bound. 18(1), 115-135 (2016) · Zbl 1344.35060 · doi:10.4171/IFB/359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.