×

Powers of sums and their homological invariants. (English) Zbl 1422.13015

Let \(R\) and \(S\) be standard graded \(k\)-algebras, and \(I\) and \(J\) non-zero, proper homogeneous ideals of \(R\) and \(S\), respectively. Denote by \(P\) the mixed sum of \(I\) and \(J\), that is the sum \(I+J \subseteq T=R\otimes_k S\), where \(I\) and \(J\) are regarded as ideals of \(T\). The authors investigate in the paper several important homological invariants of powers of \(P\), including the projective dimension, regularity and linearity defect, in terms of the information about \(I\) and \(J\). In particular, it is proved in the paper that if \(R\) and \(S\) are polynomial rings over \(k\) and either \(\mathrm{char}k=0\) or \(I\) and \(J\) are monomial ideals then for each \(s\geq1\) there are qualities: \[ \mathrm{depth }T/P^s=\min_{i\in[1,s-1], j\in[1,s]}\{\mathrm{depth }R/I^{s-i}+\mathrm{depth }S/J^{i}+1,\mathrm{ depth }R/I^{s-j+1}+\mathrm{depth }S/J^{i}\} \] and \[ \mathrm{reg }T/P^s=\max_{i\in[1,s-1], j\in[1,s]}\{\mathrm{reg }R/I^{s-i}+\mathrm{reg }S/J^{i}+1, \mathrm{reg }R/I^{s-j+1}+\mathrm{reg }S/J^{i}\}. \]
Reviewer: Li Liang (Lanzhou)

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
13C05 Structure, classification theorems for modules and ideals in commutative rings
13D05 Homological dimension and commutative rings

Software:

Macaulay2

References:

[1] Ahangari Maleki, R., The Golod property for powers of ideals and Koszul ideals, J. Pure Appl. Algebra, 223, 605-618 (2019) · Zbl 1442.13032
[2] Ahangari Maleki, R.; Rossi, M. E., Regularity and linearity defect of modules over local rings, J. Commut. Algebra, 6, 4, 485-504 (2014) · Zbl 1321.13004
[3] Avramov, L. L., Small homomorphisms of local rings, J. Algebra, 50, 2, 400-453 (1978) · Zbl 0395.13005
[4] Avramov, L. L., Infinite free resolution, (Six Lectures on Commutative Algebra. Six Lectures on Commutative Algebra, Bellaterra, 1996. Six Lectures on Commutative Algebra. Six Lectures on Commutative Algebra, Bellaterra, 1996, Prog. Math., vol. 166 (1998), Birkhäuser), 1-118 · Zbl 0934.13008
[5] Avramov, L. L.; Eisenbud, D., Regularity of modules over a Koszul algebra, J. Algebra, 153, 85-90 (1992) · Zbl 0770.13006
[6] Bandari, S.; Herzog, J.; Hibi, T., Monomial ideals whose depth function has any given number of strict local maxima, Ark. Mat., 52, 11-19 (2014) · Zbl 1314.13022
[7] Brodmann, M., The asymptotic nature of the analytic spread, Math. Proc. Camb. Philos. Soc., 86, 1, 35-39 (1979) · Zbl 0413.13011
[8] Bruns, W.; Conca, A., Linear resolutions of powers and products, (Decker, W.; Pfister, G.; Schulze, M., Singularities and Computer Algebra (2017), Springer: Springer Cham), 47-69 · Zbl 1405.13022
[9] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, Camb. Stud. Adv. Math., vol. 39 (1998), Cambridge University Press · Zbl 0909.13005
[10] Chardin, M., Powers of ideals and the cohomology of stalks and fibers of morphisms, Algebra Number Theory, 7, 1, 1-18 (2013) · Zbl 1270.13008
[11] Chardin, M., Powers of ideals: Betti numers, cohomology and regularity, (Commutative Algebra (2013), Springer), 317-333 · Zbl 1262.13026
[12] Chardin, M.; Jouanolou, J.-P.; Rahimi, A., The eventual stability of depth, associated primes and cohomology of a graded module, J. Commut. Algebra, 5, 1, 63-92 (2013) · Zbl 1275.13014
[13] Conca, A., Universally Koszul algebras, Math. Ann., 317, 329-346 (2000) · Zbl 0960.13003
[14] Conca, A.; Iyengar, S. B.; Nguyen, H. D.; Römer, T., Absolutely Koszul algebras and the Backelin-Roos property, Acta Math. Vietnam., 40, 353-374 (2015) · Zbl 1330.13015
[15] Conca, A.; Trung, N. V.; Valla, G., Koszul property for points in projective space, Math. Scand., 89, 201-216 (2001) · Zbl 1025.13003
[16] Cutkosky, S. D.; Herzog, J.; Trung, N. V., Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compos. Math., 118, 3, 243-261 (1999) · Zbl 0974.13015
[17] Eisenbud, D., Commutative Algebra. With a View Toward Algebraic Geometry, Grad. Texts Math., vol. 150 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0819.13001
[18] Eisenbud, D.; Fløystad, G.; Schreyer, F.-O., Sheaf cohomology and free resolutions over exterior algebras, Trans. Am. Math. Soc., 355, 4397-4426 (2003) · Zbl 1063.14021
[19] Eisenbud, D.; Goto, S., Linear free resolutions and minimal multiplicity, J. Algebra, 88, 89-133 (1984) · Zbl 0531.13015
[20] Eisenbud, D.; Harris, J., Powers of ideals and fibers of morphisms, Math. Res. Lett., 17, 2, 267-273 (2010) · Zbl 1226.13012
[21] Eisenbud, D.; Ulrich, B., Notes on regularity stabilization, Proc. Am. Math. Soc., 140, 4, 1221-1232 (2012) · Zbl 1246.13016
[22] Eliahou, S.; Kervaire, M., Minimal resolutions of some monomial ideals, J. Algebra, 129, 1, 1-25 (1990) · Zbl 0701.13006
[23] Francisco, C.; Hà, H. T.; Van Tuyl, A., Splittings of monomial ideals, Proc. Am. Math. Soc., 137, 3271-3282 (2009) · Zbl 1180.13018
[24] Grayson, D.; Stillman, M., Macaulay2, a software system for research in algebraic geometry, available at
[25] Hà, H. T.; Trung, N. V.; Trung, T. N., Depth and regularity of powers of sums of ideals, Math. Z., 282, 3-4, 819-838 (2016) · Zbl 1345.13006
[26] Herzog, J.; Hibi, T., Componentwise linear ideals, Nagoya Math. J., 153, 141-153 (1999) · Zbl 0930.13018
[27] Herzog, J.; Hibi, T., The depth of powers of an ideal, J. Algebra, 291, 2, 534-550 (2005) · Zbl 1096.13015
[28] Herzog, J.; Hibi, T., Monomial Ideals, Grad. Texts Math., vol. 260 (2011), Springer · Zbl 1206.13001
[29] Herzog, J.; Hibi, T.; Ohsugi, H., Powers of Componentwise Linear Ideals, Abel Symp., vol. 6 (2011), Springer: Springer Berlin · Zbl 1317.13009
[30] Herzog, J.; Hibi, T.; Zheng, X., Monomial ideals whose powers have a linear resolution, Math. Scand., 95, 23-32 (2004) · Zbl 1091.13013
[31] Herzog, J.; Huneke, C., Ordinary and symbolic powers are Golod, Adv. Math., 246, 89-99 (2013) · Zbl 1305.13002
[32] Herzog, J.; Iyengar, S. B., Koszul modules, J. Pure Appl. Algebra, 201, 154-188 (2005) · Zbl 1106.13011
[33] Herzog, J.; Takayama, Y.; Terai, N., On the radical of a monomial ideal, Arch. Math., 85, 397-408 (2005) · Zbl 1112.13003
[34] Herzog, J.; Vladiou, M., Squarefree monomial ideals with constant depth function, J. Pure Appl. Algebra, 217, 9, 1764-1772 (2013) · Zbl 1284.13015
[35] Hoa, L. T.; Tam, N. D., On some invariants of a mixed product of ideals, Arch. Math., 94, 327-337 (2010) · Zbl 1191.13032
[36] Huneke, C.; Swanson, I., Integral Closure of Ideals, Rings, and Modules (2006), Cambridge University Press · Zbl 1117.13001
[37] Kodiyalam, V., Homological invariants of powers of an ideal, Proc. Am. Math. Soc., 118, 757-764 (1993) · Zbl 0780.13007
[38] Kodiyalam, V., Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Am. Math. Soc., 128, 2, 407-411 (2000) · Zbl 0929.13004
[39] Nam, L. D.; Varbaro, M., When does depth stabilizes early on?, J. Algebra, 445, 181-192 (2016) · Zbl 1332.13014
[40] Nguyen, H. D., Notes on the linearity defect and applications, Ill. J. Math., 59, 637-662 (2015) · Zbl 1353.13013
[41] Nguyen, H. D.; Vu, T., Linearity defects of powers are eventually constant (2015), preprint, available online at
[42] Nguyen, H. D.; Vu, T., Linearity defect of edge ideals and Fröberg’s theorem, J. Algebraic Comb., 44, 165-199 (2016) · Zbl 1342.05064
[43] Nguyen, H. D.; Vu, T., On the asymptotic behavior of the linearity defect, Nagoya Math. J., 230, 35-47 (2018) · Zbl 1411.13019
[44] Nguyen, H. D.; Vu, T., Homological invariants of powers of fiber products (2018), preprint, available online at
[45] Peeva, I., Graded Syzygies, Algebra Appl., vol. 14 (2011), Springer: Springer London · Zbl 1213.13002
[46] Römer, T., On Minimal Graded Free Resolutions (2001), University of Essen, Ph.D. dissertation · Zbl 1197.13001
[47] Römer, T., Homological properties of bigraded algebras, Ill. J. Math., 45, 4, 1361-1376 (2001) · Zbl 1094.13525
[48] Şega, L. M., Homological properties of powers of the maximal ideal of a local ring, J. Algebra, 241, 2, 827-858 (2001) · Zbl 0998.13005
[49] Şega, L. M., On the linearity defect of the residue field, J. Algebra, 384, 276-290 (2013) · Zbl 1303.13016
[50] Taylor, D., Ideals Generated by Monomials in an \(R\)-Sequence (1960), University of Chicago, Ph.D. thesis
[51] Trung, N. V.; Wang, H.-J., On the asymptotic linearity of Castelnuovo-Mumford regularity, J. Pure Appl. Algebra, 201, 42-48 (2005) · Zbl 1100.13024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.