×

Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes. (English) Zbl 1421.81111

Summary: A variety of gravitational dynamics problems in asymptotically anti-de Sitter (AdS) spacetime are amenable to efficient numerical solution using a common approach involving a null slicing of spacetime based on infalling geodesics, convenient exploitation of the residual diffeomorphism freedom, and use of spectral methods for discretizing and solving the resulting differential equations. Relevant issues and choices leading to this approach are discussed in detail. Three examples, motivated by applications to non-equilibrium dynamics in strongly coupled gauge theories, are discussed as instructive test cases. These are gravitational descriptions of homogeneous isotropization, collisions of planar shocks, and turbulent fluid flows in two spatial dimensions.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E05 Geometrodynamics and the holographic principle
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
53Z05 Applications of differential geometry to physics

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[3] E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].
[4] S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a pedestrian’s guide, Ann. Rev. Nucl. Part. Sci.59 (2009) 145 [arXiv:0901.0935] [INSPIRE]. · doi:10.1146/annurev.nucl.010909.083602
[5] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSBresolution of naked singularities, JHEP08 (2000) 052 [hep-th/0007191] [INSPIRE]. · Zbl 0986.83041 · doi:10.1088/1126-6708/2000/08/052
[6] G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [INSPIRE]. · doi:10.1103/PhysRevLett.87.081601
[7] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [INSPIRE]. · doi:10.1103/PhysRevLett.94.111601
[8] D.T. Son and A.O. Starinets, Hydrodynamics of r-charged black holes, JHEP03 (2006) 052 [hep-th/0601157] [INSPIRE]. · Zbl 1226.83038 · doi:10.1088/1126-6708/2006/03/052
[9] A. Karch, D.T. Son and A.O. Starinets, Zero sound from holography, arXiv:0806.3796 [INSPIRE].
[10] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [INSPIRE]. · Zbl 1246.81352 · doi:10.1088/1126-6708/2008/04/100
[11] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/045
[12] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [INSPIRE]. · Zbl 1263.83009
[13] A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev.D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].
[14] P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev.D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].
[15] C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP07 (2006) 013 [hep-th/0605158] [INSPIRE]. · doi:10.1088/1126-6708/2006/07/013
[16] J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev.D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].
[17] J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, The Stress tensor of a quark moving through N = 4 thermal plasma, Phys. Rev.D 75 (2007) 106003 [hep-th/0607022] [INSPIRE].
[18] P.M. Chesler and L.G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: comparing hydrodynamics and AdS/CFT, Phys. Rev.D 78 (2008) 045013 [arXiv:0712.0050] [INSPIRE].
[19] P.M. Chesler, Y.-Y. Ho and K. Rajagopal, Shining a gluon beam through quark-gluon plasma, Phys. Rev.D 85 (2012) 126006 [arXiv:1111.1691] [INSPIRE].
[20] P.M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev.D 79 (2009) 025021 [arXiv:0804.3110] [INSPIRE].
[21] P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev.D 79 (2009) 125015 [arXiv:0810.1985] [INSPIRE].
[22] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE]. · Zbl 1325.81004
[23] V. Cardoso et al., NR/HEP: roadmap for the future, Class. Quant. Grav.29 (2012) 244001 [arXiv:1201.5118] [INSPIRE]. · Zbl 1260.83001 · doi:10.1088/0264-9381/29/24/244001
[24] P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [INSPIRE]. · doi:10.1103/PhysRevLett.102.211601
[25] M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett.108 (2012) 191601 [arXiv:1202.0981] [INSPIRE]. · doi:10.1103/PhysRevLett.108.191601
[26] M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP09 (2013) 026 [arXiv:1304.5172] [INSPIRE]. · doi:10.1007/JHEP09(2013)026
[27] P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev.D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].
[28] M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — An ADM formulation, Phys. Rev.D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].
[29] H. Bantilan, F. Pretorius and S.S. Gubser, Simulation of asymptotically AdS5spacetimes with a generalized harmonic evolution scheme, Phys. Rev.D 85 (2012) 084038 [arXiv:1201.2132] [INSPIRE].
[30] P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5spacetime, Phys. Rev. Lett.106 (2011) 021601 [arXiv:1011.3562] [INSPIRE]. · doi:10.1103/PhysRevLett.106.021601
[31] J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett.111 (2013) 181601 [arXiv:1305.4919] [INSPIRE]. · doi:10.1103/PhysRevLett.111.181601
[32] J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal coherence in a holographic model of p-Pb collisions, Phys. Rev. Lett.112 (2014) 221602 [arXiv:1312.2956] [INSPIRE]. · doi:10.1103/PhysRevLett.112.221602
[33] A. Adams, P.M. Chesler and H. Liu, Holographic turbulence, Phys. Rev. Lett.112 (2014) 151602 [arXiv:1307.7267] [INSPIRE]. · doi:10.1103/PhysRevLett.112.151602
[34] W. van der Schee, P. Romatschke and S. Pratt, Fully dynamical simulation of central nuclear collisions, Phys. Rev. Lett.111 (2013) 222302 [arXiv:1307.2539] [INSPIRE]. · doi:10.1103/PhysRevLett.111.222302
[35] C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les Mathématiques d’aujourd’hui, Astérisque (1985) 95. · Zbl 0602.53007
[36] C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919 [INSPIRE]. · Zbl 1243.53004
[37] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043 · doi:10.1007/s002200100381
[38] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE]. · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[39] M.P. Heller and R.A. Janik, Viscous hydrodynamics relaxation time from AdS/CFT, Phys. Rev.D 76 (2007) 025027 [hep-th/0703243] [INSPIRE]. · Zbl 1222.81269
[40] M.P. Heller, P. Surowka, R. Loganayagam, M. Spalinski and S.E. Vazquez, Consistent holographic description of boost-invariant plasma, Phys. Rev. Lett.102 (2009) 041601 [arXiv:0805.3774] [INSPIRE]. · doi:10.1103/PhysRevLett.102.041601
[41] R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical structure and definition of energy in general relativity, Phys. Rev.116 (1959) 1322 [INSPIRE]. · Zbl 0092.20704 · doi:10.1103/PhysRev.116.1322
[42] R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav.40 (2008) 1997 [gr-qc/0405109] [INSPIRE]. · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[43] L. Lehner, Numerical relativity: a review, Class. Quant. Grav.18 (2001) R25 [gr-qc/0106072] [INSPIRE]. · Zbl 0987.83001 · doi:10.1088/0264-9381/18/17/202
[44] T.W. Baumgarte and S.L. Shapiro, Numerical relativity and compact binaries, Phys. Rept.376 (2003) 41 [gr-qc/0211028] [INSPIRE]. · Zbl 1010.85002 · doi:10.1016/S0370-1573(02)00537-9
[45] T.W. Baumgarte and S.L. Shapiro, Numerical relativity, Cambridge University Press, Cambridge U.K. (2010). · Zbl 1198.83001 · doi:10.1017/CBO9781139193344
[46] M. Alcubierre, G. Allen, B. Bruegmann, E. Seidel and W.-M. Suen, Towards an understanding of the stability properties of the (3 + 1) evolution equations in general relativity, Phys. Rev.D 62 (2000) 124011 [gr-qc/9908079] [INSPIRE].
[47] H.-J. Yo, T.W. Baumgarte and S.L. Shapiro, Improved numerical stability of stationary black hole evolution calculations, Phys. Rev.D 66 (2002) 084026 [gr-qc/0209066] [INSPIRE].
[48] A.M. Knapp, E.J. Walker and T.W. Baumgarte, Illustrating stability properties of numerical relativity in electrodynamics, Phys. Rev.D 65 (2002) 064031 [gr-qc/0201051] [INSPIRE].
[49] G. Calabrese, I. Hinder and S. Husa, Numerical stability for finite difference approximations of Einstein’s equations, J. Comput. Phys.218 (2006) 607 [gr-qc/0503056] [INSPIRE]. · Zbl 1106.65080 · doi:10.1016/j.jcp.2006.02.027
[50] J. Winicour, Characteristic evolution and matching, Living Rev. Rel.1 (1998) 5 [Living Rev. Rel. 4 (2001) 3] [Living Rev. Rel. 8 (2005) 5] [Living Rev. Rel. 12 (2009) 3] [gr-qc/0102085] [INSPIRE]. · Zbl 1316.83015
[51] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE]. · Zbl 1057.81550
[52] R.M. Wald, General relativity, Chicago University Press, Chicago U.S.A. (1984). · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[53] I. Booth, Black hole boundaries, Can. J. Phys.83 (2005) 1073 [gr-qc/0508107] [INSPIRE]. · doi:10.1139/p05-063
[54] E. Poisson, An advanced course in general relativity, (2002).
[55] J.P. Boyd, Chebyshev and Fourier spectral methods, Dover, U.S.A. (2001), see website. · Zbl 0994.65128
[56] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes: the art of scientific computing, 3rd edition, Cambridge University Press, Cambridge U.K. (2007). · Zbl 1132.65001
[57] R. Courant, K. Friedrichs and H. Lewy, On the partial difference equations of mathematical physics, IBM J.11 (1967) 215, translated from Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann.100 (1928) 32. · Zbl 0145.40402
[58] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052] [INSPIRE]. · doi:10.1088/1126-6708/2002/09/043
[59] K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, New Haven U.S.A. (1986). · Zbl 1374.83002
[60] S.A. Orszag, On the elimination of aliasing in finite difference schemes by filtering high-wavenumber components, J. Atmos. Sci.28 (1971) 1074 · doi:10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2
[61] U.W. Heinz, Concepts of heavy ion physics, hep-ph/0407360 [INSPIRE].
[62] U.W. Heinz, Thermalization at RHIC, AIP Conf. Proc.739 (2005) 163 [nucl-th/0407067] [INSPIRE]. · doi:10.1063/1.1843595
[63] E. Shuryak, Physics of strongly coupled quark-gluon plasma, Prog. Part. Nucl. Phys.62 (2009) 48 [arXiv:0807.3033] [INSPIRE]. · doi:10.1016/j.ppnp.2008.09.001
[64] R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev.D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].
[65] S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP08 (2009) 059 [arXiv:0810.1545] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/059
[66] M. Van Raamsdonk, Black hole dynamics from atmospheric science, JHEP05 (2008) 106 [arXiv:0802.3224] [INSPIRE]. · doi:10.1088/1126-6708/2008/05/106
[67] F. Carrasco, L. Lehner, R.C. Myers, O. Reula and A. Singh, Turbulent flows for relativistic conformal fluids in 2 + 1 dimensions, Phys. Rev.D 86 (2012) 126006 [arXiv:1210.6702] [INSPIRE].
[68] C. Eling and Y. Oz, Relativistic CFT hydrodynamics from the membrane paradigm, JHEP02 (2010) 069 [arXiv:0906.4999] [INSPIRE]. · Zbl 1270.83027 · doi:10.1007/JHEP02(2010)069
[69] A. Adams, P.M. Chesler and H. Liu, Holographic vortex liquids and superfluid turbulence, Science341 (26 July 2013) 368 [arXiv:1212.0281] [INSPIRE]. · Zbl 1355.76013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.