×

Relativistic CFT hydrodynamics from the membrane paradigm. (English) Zbl 1270.83027

Summary: We use the membrane paradigm to analyze the horizon dynamics of a uniformly boosted black brane in a (\(d\) + 2)-dimensional asymptotically Anti-de-Sitter space-time and a Rindler acceleration horizon in (\(d\) + 2)-dimensional Minkowski space-time. We show that in these cases the horizon dynamics is governed by the relativistic CFT hydrodynamics equations. The fluid velocity and temperature correspond to the normal to the horizon and to the surface gravity, respectively. The second law of thermodynamics for the fluid is mapped into the area increase theorem of General Relativity. The analysis is applicable, in general, to perturbations around a stationary horizon, when the scale of variations of the macroscopic fields is much larger than the inverse of the temperature. We show that the non-relativistic limit of our analysis yields the incompressible Navier-Stokes equations.

MSC:

83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
80A10 Classical and relativistic thermodynamics

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [SPIRES]. · Zbl 0914.53047
[2] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [SPIRES]. · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[3] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [SPIRES]. · doi:10.1088/1126-6708/2008/02/045
[4] I. Fouxon and Y. Oz, CFT hydrodynamics: symmetries, exact solutions and gravity, JHEP03 (2009) 120 [arXiv:0812.1266] [SPIRES]. · doi:10.1088/1126-6708/2009/03/120
[5] I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations, Phys. Rev. Lett.101 (2008) 261602 [arXiv:0809.4512] [SPIRES]. · doi:10.1103/PhysRevLett.101.261602
[6] S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP08 (2009) 059 [arXiv:0810.1545] [SPIRES]. · doi:10.1088/1126-6708/2009/08/059
[7] S. Bhattacharyya et al., Local fluid dynamical entropy from gravity, JHEP06 (2008) 055 [arXiv:0803.2526] [SPIRES]. · doi:10.1088/1126-6708/2008/06/055
[8] T. Damour, Quelques propriétés mécaniques, électromagneetiques, thermodynamiques et quantiques des trous noirs, these de doctorat d’etat, University of Paris VI, Paris, France (1979).
[9] Damour, T.; Ruffini, R. (ed.), Surface effects in black-hole physics, 587 (1982), Amsterdam The Netherlands
[10] T. Damour and M. Lilley, String theory, gravity and experiment, arXiv:0802.4169 [SPIRES].
[11] R.H. Price and K.S. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev.D 33 (1986) 915 [SPIRES].
[12] K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, U.S.A. (1986). · Zbl 1374.83002
[13] P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP10 (2003) 064 [hep-th/0309213] [SPIRES]. · doi:10.1088/1126-6708/2003/10/064
[14] O. Saremi, Shear waves, sound waves on a shimmering horizon, hep-th/0703170 [SPIRES].
[15] M. Fujita, Non-equilibrium thermodynamics near the horizon and holography, JHEP10 (2008) 031 [arXiv:0712.2289] [SPIRES]. · Zbl 1245.83062 · doi:10.1088/1126-6708/2008/10/031
[16] A.O. Starinets, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett.B 670 (2009) 442 [arXiv:0806.3797] [SPIRES].
[17] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev.D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].
[18] C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett.B 680 (2009) 496 [arXiv:0905.3638] [SPIRES].
[19] L.D. Landau and E.M. Lifshitz, Fluid mechanics, Butterworth-Heinemann, U.K. (2000).
[20] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [SPIRES]. · Zbl 1246.81352 · doi:10.1088/1126-6708/2008/04/100
[21] S. Jeon and L.G. Yaffe, From quantum field theory to hydrodynamics: transport coefficients and effective kinetic theory, Phys. Rev.D 53 (1996) 5799 [hep-ph/9512263] [SPIRES].
[22] M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev.D 58 (1998) 064011 [gr-qc/9712077] [SPIRES].
[23] E. Gourgoulhon and J.L. Jaramillo, A 3 + 1 perspective on null hypersurfaces and isolated horizons, Phys. Rept.423 (2006) 159 [gr-qc/0503113] [SPIRES]. · doi:10.1016/j.physrep.2005.10.005
[24] M. Mars and J.M.M. Senovilla, Geometry of general hypersurfaces in spacetime: junction conditions, Class. Quant. Grav.10 (1993) 1865 [gr-qc/0201054] [SPIRES]. · Zbl 0786.53014 · doi:10.1088/0264-9381/10/9/026
[25] V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [SPIRES]. · Zbl 0946.83013 · doi:10.1007/s002200050764
[26] R.K. Gupta and A. Mukhopadhyay, On the universal hydrodynamics of strongly coupled CFTs with gravity duals, JHEP03 (2009) 067 [arXiv:0810.4851] [SPIRES]. · doi:10.1088/1126-6708/2009/03/067
[27] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [SPIRES].
[28] C. Eling, Hydrodynamics of spacetime and vacuum viscosity, JHEP11 (2008) 048 [arXiv:0806.3165] [SPIRES]. · doi:10.1088/1126-6708/2008/11/048
[29] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP01 (2009) 055 [arXiv:0809.2488] [SPIRES]. · Zbl 1243.83037 · doi:10.1088/1126-6708/2009/01/055
[30] N. Banerjee et al., Hydrodynamics from charged black branes, arXiv:0809.2596 [SPIRES]. · Zbl 1214.83014
[31] I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP04 (2009) 062 [arXiv:0901.1487] [SPIRES]. · doi:10.1088/1126-6708/2009/04/062
[32] S. Dutta, Higher derivative corrections to locally black brane metrics, JHEP05 (2008) 082 [arXiv:0804.2453] [SPIRES]. · doi:10.1088/1126-6708/2008/05/082
[33] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev.D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].
[34] Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP01 (2009) 044 [arXiv:0712.0743] [SPIRES]. · Zbl 1243.81159 · doi:10.1088/1126-6708/2009/01/044
[35] R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev.D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].
[36] A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP03 (2009) 084 [arXiv:0812.2521] [SPIRES]. · doi:10.1088/1126-6708/2009/03/084
[37] S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev.D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.