×

Conservative multimoment transport along characteristics for discontinuous Galerkin methods. (English) Zbl 1421.76153

Summary: A set of algorithms based on characteristic discontinuous Galerkin methods is presented for tracer transport on the sphere. The algorithms are designed to reduce message passing interface communication volume per unit of simulated time relative to current methods generally, and to the spectral element scheme employed by the U.S. Department of Energy’s Exascale Earth System Model (E3SM) specifically. Two methods are developed to enforce discrete mass conservation when the transport schemes are coupled to a separate dynamics solver; constrained transport and Jacobian-combined transport. A communication-efficient method is introduced to enforce tracer consistency between the transport scheme and dynamics solver; this method also provides the transport scheme’s shape preservation capability. A subset of the algorithms derived here is implemented in E3SM and shown to improve transport performance by a factor of 2.2 for the model’s standard configuration with 40 tracers at the strong scaling limit of one element per core.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] T. Arbogast and C.-S. Huang, A fully mass and volume conserving implementation of a characteristic method for transport problems, SIAM J. Sci. Comput., 28 (2006), pp. 2001-2022, https://doi.org/10.1137/040621077. · Zbl 1293.76097
[2] D. Bader, W. Collins, R. Jacob, P. Jones, P. Rasch, M. Taylor, P. Thornton, and D. Williams, Accelerated Climate Modeling for Energy: Project Strategy and Initial Implementation Plan, Tech. report, U. S. Dept. of Energy Office of Biological and Environmental Research, Washington, DC, 2014.
[3] F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138 (1997), pp. 251-285. · Zbl 0902.76056
[4] J. Behrens and A. Iske, Grid-free adaptive semi-Lagrangian advection using radial basis functions, Comput. Math. Appl., 43 (2002), pp. 319-327. · Zbl 0999.65104
[5] P. Bochev, D. Ridzal, and K. Peterson, Optimization-based remap for transport: A divide and conquer strategy for feature-preserving discretizations, J. Comput. Phys., 257 (2014), pp. 1113-1139, https://doi.org/10.1016/j.jcp.2013.03.057. · Zbl 1351.90126
[6] P. A. Bosler, J. Kent, R. Krasny, and C. Jablonowski, A Lagrangian particle method with remeshing for tracer transport on the sphere, J. Comput. Phys., 340 (2017), pp. 639-654, https://doi.org/10.1016/j.jcp.2017.03.052. · Zbl 1376.76046
[7] A. M. Bradley, P. A. Bosler, O. Guba, M. A. Taylor, and G. A. Barnett, Communication-efficient property preservation in tracer transport, SIAM J. Sci. Comput., 41 (2019), pp. C161-C193, https://doi.org/10.1137/18M1165414. · Zbl 1421.76168
[8] A. M. Bradley, O. Guba, P. A. Bosler, and M. A. Taylor, COMPOSE: Library for Communication-Efficient, Property-Preserving, Semi-Lagrangian Tracer Transport, 2019, https://doi.org/10.5281/zenodo.2552888, https://github.com/E3SM-Project/COMPOSE.
[9] M. Celia, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Resour., 13 (1990), pp. 187-206.
[10] P. N. Childs and K. W. Morton, Characteristic Galerkin methods for scalar conservation laws in one dimension, SIAM J. Numer. Anal., 27 (1990), pp. 553-594, https://doi.org/10.1137/0727035. · Zbl 0728.65086
[11] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Dynamics, 3rd ed., Springer-Verlag, New York, 1993. · Zbl 0774.76001
[12] C. Cotter, J. Frank, and S. Reich, The remapped particle-mesh semi-Lagrangian advection scheme, Q. J. Royal Meterol. Soc., 133 (2007), pp. 251-260.
[13] S. Dey, M. S. Shephard, and J. E. Flaherty, Geometry representation issues associated with p-version finite element computations, Comput. Methods Appl. Mech. Engrg., 150 (1997), pp. 39-55. · Zbl 0907.65107
[14] J. Douglas, Jr., and T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), pp. 871-885, https://doi.org/10.1137/0719063. · Zbl 0492.65051
[15] D. Dritschel and M. H. P. Ambaum, A contour-advected semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields, Q. J. Royal Meterol. Soc., 123 (1997), pp. 1097-1130.
[16] J. K. Dukowicz and J. R. Baumgardner, Incremental remapping as a transport/advection algorithm, J. Comput. Phys., 160 (2000), pp. 318-335, https://doi.org/10.1006/jcph.2000.6465. · Zbl 0972.76079
[17] P. E. Farrell, M. D. Piggot, C. C. Pain, G. J. Gorman, and C. R. Wilson, Conservative interpolation between unstructured meshes via supermesh construction, Comput. Methods Appl. Mech. Eng., 198 (2009), pp. 2632-2642, https://doi.org/10.1016/j.cma.2009.03.004. · Zbl 1228.76105
[18] N. Flyer and E. Lehto, Rotational transport on a sphere: local node refinement with radial basis functions, J. Comput. Phys., 229 (2010), pp. 1954-1969. · Zbl 1303.76128
[19] N. Flyer and G. B. Wright, Transport schemes on a sphere using radial basis functions, J. Comput. Phys., 226 (2007), pp. 1059-1084. · Zbl 1124.65097
[20] B. Fornberg and E. Lehto, Stabilization of RBF-generated finite-difference methods for convective PDEs, J. Comput. Phys., 230 (2011), pp. 2270-2285. · Zbl 1210.65154
[21] F. X. Giraldo, Lagrange-Galerkin methods on spherical geodesic grids, J. Comput. Phys., 136 (1997), pp. 197-213. · Zbl 0909.65066
[22] E. S. Gross, L. Bonaventura, and G. Rosatti, Consistency with continuity in conservative advection schemes for free-surface models, Int. J. Numer. Methods Fluids, 38 (2002), pp. 307-327. · Zbl 1009.76063
[23] O. Guba, M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N. Levy, The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity, Geosci. Model Dev., 7 (2014), pp. 2803-2816, https://doi.org/10.5194/gmd-7-2803-2014.
[24] C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14 (1974), pp. 227-253. · Zbl 0292.76018
[25] C. Jablonowski and D. L. Williamson, A baroclinic instability test case for atmospheric model dynamical cores, Q. J. Royal Meterol. Soc., 132 (2006), pp. 2943-2975, https://doi.org/10.1256/qj.06.12.
[26] X. Jiao and M. T. Heath, Common-refinement-based data transfer between non-matching meshes in multiphysics simulations, Int. J. Numer. Meth. Eng., 61 (2004), pp. 2402-2427, https://doi.org/10.1002/nme.1147. · Zbl 1075.74711
[27] E. Kaas, B. Sorensen, P. H. Lauritzen, and A. B. Hansen, A hybrid Eulerian-Lagrangian numerical scheme for solving prognostic equations in fluid dynamics, Geosci. Model Dev., 6 (2013), pp. 2023-2047.
[28] R. Krause and P. Zulian, A parallel approach to the variational transfer of discrete fields between arbitrarily distributed unstructured finite element meshes, SIAM J. Sci. Comput., 38 (2016), pp. C307-C333, https://doi.org/10.1137/15M1008361. · Zbl 06601529
[29] J.-F. Lamarque, L. K. Emmons, P. G. Hess, D. E. Kinnison, S. Tilmes, F. Vitt, C. L. Heald, E. A. Holland, P. H. Lauritzen, J. Neu, J. J. Orlando, P. J. Rasch, and G. K. Tyndall, CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5 (2012), pp. 369-411.
[30] P. H. Lauritzen, R. D. Nair, and P. A. Ullrich, A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid, J. Comput. Phys., 229 (2010), pp. 1401-1424. · Zbl 1329.65198
[31] P. H. Lauritzen, W. C. Skamarock, M. J. Prather, and M. A. Taylor, A standard test case suite for two-dimensional linear transport on the sphere, Geosci. Model Dev., 5 (2012), pp. 887-901, https://doi.org/10.5194/gmd-5-887-2012.
[32] P. H. Lauritzen, P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun, A. J. Conley, T. Enomoto, L. Dong, S. Dubey, O. Guba, A. B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque, M. J. Prather, D. Reinert, V. V. Shashkin, W. C. Skamarock, B. Sorensen, M. A. Taylor, and M. A. Tolstykh, A standard test case suite for two-dimensional linear transport on the sphere: Results from a collection of state-of-the-art schemes, Geosci. Model Dev., 7 (2014), pp. 105-145, https://doi.org/10.5194/gmd-7-105-2014.
[33] P. H. Lauritzen, P. A. Ullrich, and R. D. Nair, Atmospheric transport schemes: Desirable properties and a semi-Lagrangian view on finite-volume discretizations, in Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, eds., Lect. Notes Comput. Sci. Eng. 80, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 188-250. · Zbl 1215.86001
[34] J. H. W. Lee, J. Peraire, and O. C. Zienkiewicz, The characteristic-Galerkin method for advection-dominated problems–An assessment, Comput. Methods Appl. Mech. Eng., 61 (1987), pp. 359-369. · Zbl 0611.76095
[35] S. J. Lin and R. B. Rood, Multidimensional flux-form semi-Lagrangian transport schemes, Mon. Weather Rev., 124 (1996), 2046-2070.
[36] J. L. McGregor, Economical determination of departure points for semi-Lagrangian models, Mon. Weather Rev., 121 (1993), pp. 221-230.
[37] K. W. Morton, A. Priestly, and E. Suli, Stability of the Lagrange-Galerkin method with non-exact integration, RAIRO Model. Math. Anal. Numer., 22 (1988), pp. 625-653. · Zbl 0661.65114
[38] R. D. Nair, S. J. Thomas, and R. D. Loft, A discontinuous Galerkin transport scheme on the cubed sphere, Mon. Weather Rev., 133 (2005), pp. 814-828.
[39] P. Jöckel, R. von Kuhlmann, M. G. Lawrence, B. Steil, C. A. M. Brenninkmeijer, P. J. Crutzen, P. J. Rasch, and B. Eaton, On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-dimensional general circulation and chemistry transport models, Q. J. Royal Meterol. Soc., 127 (2001), pp. 1035-1052.
[40] A. Priestly, Exact projections and the Lagrange-Galerkin method: A realistic alternative to quadrature, J. Comput. Phys., 112 (1994), pp. 316-333. · Zbl 0809.65097
[41] W. M. Putnam and S.-J. Lin, Finite-volume transport on various cubed-sphere grids, J. Comput. Phys., 227 (2007), pp. 55-78. · Zbl 1126.76038
[42] M. Restelli, L. Bonaventura, and R. Sacco, A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flow, J. Comput. Phys., 216 (2006), pp. 195-215. · Zbl 1090.76045
[43] R. B. Rood, Numerical advection algorithms and their role in atmospheric transport and chemistry models, Rev. Geophysics, 25 (1987), pp. 71-100.
[44] D. A. Rotman, C. S. Atherton, D. J. Bergmann, P. J. Cameron-Smith, C. Chuang, P. S. Connell, J. E. Dignon, A. Franz, K. E. Grant, D. E. Kinnison, C. R. Molenkammp, D. D. Proctor, and J. R. Tannahill, IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases, J. Geophys. Res., 109 (2004), D04303, https://doi.org/10.1029/2002JD003155.
[45] R. Sevilla, S. Fernández-Méndez, and A. Huerta, Comparison of high-order curved finite elements, Int. J. Numer. Meth. Eng., 87 (2011), pp. 719-734. · Zbl 1242.65244
[46] V. Shankar and G. B. Wright, Mesh-free semi-Lagrangian methods for transport on a sphere using radial basis functions, J. Comput. Phys., 366 (2018), pp. 170-190. · Zbl 1406.65099
[47] Z. Si, J. Wang, and W. Sun, Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations, Numer. Math., 134 (2016), pp. 139-161, https://doi.org/10.1007/s00211-015-0767-9. · Zbl 1346.76073
[48] A. Staniforth and J. Coté, Semi-Lagrangian integration schemes for atmospheric models: A review, Mon. Weather Rev., 119 (1991), pp. 2206-2223.
[49] G. Strang and G. Fix, An Analysis of the Finite Element Method, 2nd ed., Wellesley-Cambridge Press, Wellesley, MA, 2008. · Zbl 1171.65081
[50] I. Sutherland and G. W. Hodgman, Reentrant polygon clipping, Comm. ACM, 17 (1974), pp. 32-42. · Zbl 0271.68065
[51] M. A. Taylor and A. Fournier, A compatible and conservative specral element method on unstructured grids, J. Comput. Phys., 229 (2010), pp. 5879-5895. · Zbl 1425.76177
[52] M. A. Taylor, B. A. Wingate, and L. P. Bos, A cardinal function algorithm for computing multivariate quadrature points, SIAM J. Numer. Anal., 45 (2007), pp. 193-205, https://doi.org/10.1137/050625801. · Zbl 1142.65028
[53] C. R. Trott, M. Hoemmen, S. D. Hammond, and H. C. Edwards, Kokkos: The programming guide, Tech. Report SAND2015-4178 O, Sandia National Laboratories, Albuquerque, NM, 2015, https://github.com/kokkos/kokkos.
[54] P. A. Ullrich, P. H. Lauritzen, and C. Jablonowski, Some considerations for high-order “incremental remap”-based transport schemes: edges, reconstructions, and area integration, Int. J. Numer. Meth. Fluids, 71 (2013), pp. 1131-1151, https://doi.org/10.1002/fld.3703. · Zbl 1431.65147
[55] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102 (1992), pp. 211-224. · Zbl 0756.76060
[56] M. Zerroukat, N. Wood, and A. Staniforth, A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme, Q. J. Royal Meterol. Soc., 131 (2005), pp. 2923-2936, https://doi.org/10.1256/qj.04.97.
[57] K. Zhang, H. Wan, B. Wang, and M. Zhang, Consistency problem with tracer advection in the atmospheric model GAMIL, Adv. Atmos. Sci., 25 (2008), pp. 306-318.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.