×

Dressing the boundary: on soliton solutions of the nonlinear Schrödinger equation on the half-line. (English) Zbl 1420.35388

Summary: Based on the theory of integrable boundary conditions (BCs) developed by Sklyanin, we provide a direct method for computing soliton solutions of the focusing nonlinear Schrödinger equation on the half-line. The integrable BCs at the origin are represented by constraints of the Lax pair, and our method lies on dressing the Lax pair by preserving those constraints in the Darboux-dressing process. The method is applied to two classes of solutions: solitons vanishing at infinity and self-modulated solitons on a constant background. Half-line solitons in both cases are explicitly computed. In particular, the boundary-bound solitons, which are static solitons bounded at the origin, are also constructed. We give a natural inverse scattering transform interpretation of the method as evolution of the scattering data determined by the integrable BCs in space.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
35C08 Soliton solutions

References:

[1] GardnerCS, GreeneJM, KruskalMD, MiuraRM. Method for solving the Korteweg‐de Vries equation. Phys Rev Lett. 1967;19(19):1095. · Zbl 1061.35520
[2] GardnerCS. Korteweg‐de Vries equation and generalizations. IV. The Korteweg‐de Vries equation as a Hamiltonian system. J Math Phys. 1971;12(8):1548‐1551. · Zbl 0283.35021
[3] ZakharovVE, FaddeevLD. Korteweg‐de Vries equation: a completely integrable Hamiltonian system. Funct Anal Appl. 1971;5(4):280‐287. · Zbl 0257.35074
[4] SklyaninEK. Boundary conditions for integrable equations. Funct Anal Appl. 1987;21(2):164‐166. · Zbl 0643.35093
[5] FaddeevLD, TakhtajanLA. Hamiltonian Methods in the Theory of Solitons. Berlin: Springer Science & Business Media; 2007. · Zbl 1111.37001
[6] SklyaninEK. Boundary conditions for integrable quantum systems. J Phys A: Math. Gen. 1988;21(10): 2375. · Zbl 0685.58058
[7] CherednikIV. Factorizing particles on a half‐line and root systems. Theor Math Phys. 1984;61(1):977‐983. · Zbl 0575.22021
[8] AblowitzMJ, KaupDJ, NewellAC, SegurH. The inverse scattering transform—Fourier analysis for nonlinear problems. Stud Appl Math. 1974;53(4):249‐315. · Zbl 0408.35068
[9] FokasAS. A unified transform method for solving linear and certain nonlinear PDEs. Proc R Soc Lond A: Math Phys Eng Sci. 1997;453(1962):1411‐1443. · Zbl 0876.35102
[10] FokasAS. Integrable nonlinear evolution equations on the half‐line. Commun Math Phys. 2002;230(1):1‐39. · Zbl 1010.35089
[11] FokasAS. A Unified Approach to Boundary Value Problems. SIAM; 2008. · Zbl 1181.35002
[12] DeiftP, ParkJ. Long‐time asymptotics for solutions of the NLS equation with a delta potential and even initial data: announcement of results. Lett Math Phys. 2011;96(1‐3):143‐156. · Zbl 1216.35135
[13] ZakharovVE, ShabatAB. Exact theory of two‐dimensional self‐focusing and one‐dimensional self‐modulation of waves in non‐linear media. Sov Phys. 1972;34(1):62‐69.
[14] AblowitzMJ, PrinariB, TrubatchAD. Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge: Cambridge University Press; 2004. · Zbl 1057.35058
[15] ZakharovVE, ShabatAB. Interaction between solitons in a stable medium. Sov Phys. 1973;37(5):823‐828.
[16] AsanoN, KatoY. Nonselfadjoint Zakharov‐Shabat operator with a potential of the finite asymptotic values. I. Direct spectral and scattering problems. J Math Phys. 1981;22(12):2780‐2793. · Zbl 0486.35064
[17] AsanoN, KatoY. Non‐selfadjoint Zakharov‐Shabat operator with a potential of the finite asymptotic values. II. Inverse problem. J Math Phys. 1984;25(3):570‐588.
[18] FokasAS. An initial‐boundary value problem for the nonlinear Schrödinger equation. Physica D. 1989;35(1):167‐185. · Zbl 0679.35076
[19] TarasovVO. The integrable initial‐boundary value problem on a semiline: nonlinear Schrodinger and sine‐Gordon equations. Inverse Prob. 1991;7(3):435. · Zbl 0732.35089
[20] HabibullinIT. The Bäcklund transformation and integrable initial boundary value problems. Mat Zametki. 1991;49(4):130‐137. · Zbl 0737.35122
[21] FokasAS, ItsAR. The linearization of the initial‐boundary value problem of the nonlinear Schrödinger equation. SIAM J Math Anal. 1996;27(3):738‐764. · Zbl 0851.35122
[22] FokasAS, ItsAR, SungLY. The nonlinear Schrödinger equation on the half‐line. Nonlinearity. 2005;18(4):1771. · Zbl 1181.37095
[23] BiondiniG, HwangG. Solitons, boundary value problems and a nonlinear method of images. J Phys A: Math Theor. 2009;42(20):205‐207. · Zbl 1173.35675
[24] CaudrelierV, ZhangC. The vector nonlinear Schrödinger equation on the half‐line. J Phys A: Math Theor. 2012;45(10):105201. · Zbl 1238.35145
[25] BiondiniG, BuiA. On the nonlinear Schrödinger equation on the half line with homogeneous Robin boundary conditions. Stud Appl Math. 2012;129(3):249‐271. · Zbl 1277.35312
[26] DeiftP, ParkJ. Long‐time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int Math Res Notices. 2011;2011(24):5505‐5624. · Zbl 1251.35145
[27] BuC. An initial‐boundary value problem of the nonlinear Schrödinger equation. Appl Anal. 1994;53(3‐4):241‐250. · Zbl 0842.35112
[28] BatalA, Özsar, T. Nonlinear Schrödinger equations on the half‐line with nonlinear boundary conditions. Electr J Differ Equ. 2016;222:1‐20. · Zbl 1351.35179
[29] FokasAS, HimonasA, MantzavinosD. The nonlinear Schrödinger equation on the half‐line. Trans Am Math Soc. 2017;369(1):681‐709. · Zbl 1351.35182
[30] BonaJL, SunSM, ZhangBY. Nonhomogeneous boundary‐value problems for one‐dimensional nonlinear Schrödinger equations. J Math Pures Appl. 2018;109:1‐66. · Zbl 1379.35287
[31] ZakharovVE, ShabatAB. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct Anal Appl. 1974;8(3):226‐235. · Zbl 0303.35024
[32] ZakharovVE, ShabatAB. Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II. Funct Anal Appl. 1979;13(3):166‐174. · Zbl 0448.35090
[33] MatveevVB, SalleMA. Darboux Transformations and Solitons. Berlin: Springer‐Verlag; 1991. · Zbl 0744.35045
[34] AvanJ, CaudrelierV, Crampé, N. From Hamiltonian to zero curvature formulation for classical integrable boundary conditions. J Phys A: Math Theor. 2018;51(30):30LT01. · Zbl 1407.37091
[35] BikbaevRF, TarasovVO. Initial boundary value problem for the nonlinear Schrödinger equation. J Phys A: Math Theor. 1991;24(11):2507‐2516. · Zbl 0753.35090
[36] BabelonO, BernardD, TalonM. Introduction to Classical Integrable Systems. Cambridge: Cambridge University Press; 2003. · Zbl 1045.37033
[37] ManasM. Darboux transformations for the nonlinear Schrödinger equations. J Phys A: Math Gen. 1996;29(23):7721. · Zbl 0906.35097
[38] ZhangC, ChengQ, Zhang, D‐J. Soliton solutions of the sine‐Gordon equation on the half‐line. Appl Math Lett. 2018;86:64‐69. · Zbl 1407.35052
[39] CaudrelierV. On the inverse scattering method for integrable PDEs on a star graph. Commun Math Phys. 2015;338(2):893‐917. · Zbl 1342.35449
[40] NovikovSP. The periodic problem for the Korteweg‐de vries equation. Funct Anal Appl. 1974;8(3):236‐246. · Zbl 0299.35017
[41] BelokolosED. Algebro‐Geometric Approach to Nonlinear Integrable Equations. Berlin: Springer; 1994. · Zbl 0809.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.