×

Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations. (English. French summary) Zbl 1379.35287

Summary: This paper is concerned with initial-boundary-value problems (IBVPs) for a class of nonlinear Schrödinger equations posed either on a half line \(\mathbb R^+\) or on a bounded interval \((0,L)\) with nonhomogeneous boundary conditions. For any \(s\) with \(0\leq s<5/2\) and \(s\neq 1/2\), it is shown that the relevant IBVPs are locally well-posed if the initial data lie in the \(L^2\)-based Sobolev spaces \(H^s(\mathbb R^+)\) in the case of the half line and in \(H^s(0,L)\) on a bounded interval, provided the boundary data are selected from \(H_{\mathrm{loc}}^{(2s+1)/4}(\mathbb R^+)\) and \(H^{(s+1)/2}_{\mathrm{loc}}(\mathbb R^+)\), respectively. (For \(s>\frac{1}{2}\), compatibility between the initial and boundary conditions is also needed.) Global well-posedness is also discussed when \(s\geq 1\). From the point of view of the well-posedness theory, the results obtained reveal a significant difference between the IBVP posed on \(\mathbb R^+\) and the IBVP posed on \((0,L)\). The former is reminiscent of the theory for the pure initial-value problem (IVP) for these Schrödinger equations posed on the whole line \(\mathbb R\) while the theory on a bounded interval looks more like that of the pure IVP posed on a periodic domain. In particular, the regularity demanded of the boundary data for the IBVP on \(\mathbb R^+\) is consistent with the temporal trace results that obtain for solutions of the pure IVP on \(\mathbb R\), while the slightly higher regularity of boundary data for the IBVP on \((0,L)\) resembles what is found for temporal traces of spatially periodic solutions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q35 PDEs in connection with fluid mechanics
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Ablowitz, M. J.; Hammack, J.; Henderson, D.; Schober, C., Modulated periodic Stokes waves in deep water, Phys. Rev. Lett., 84, 887-890 (2000)
[2] Audiard, C., Non-homogeneous boundary value problems for linear dispersive equations, Commun. Partial Differ. Equ., 37, 1-37 (2012) · Zbl 1246.35048
[3] Audiard, C., On the non-homogeneous boundary value problem for Schrödinger equations, Discrete Contin. Dyn. Syst., 33, 3861-3884 (2013) · Zbl 1285.35104
[4] Bona, J. L.; Chen, H.; Sun, S.-M.; Zhang, B.-Y., Comparison of quarter-plane and two-point boundary-value problems: the BBM-equation, Discrete Contin. Dyn. Syst., 13, 921-940 (2005) · Zbl 1088.35057
[5] Bona, J. L.; Colin, T.; Lannes, D., Long wave approximations for water waves, Arch. Ration. Mech. Anal., 178, 373-410 (2005) · Zbl 1108.76012
[6] Bona, J. L.; Ponce, G.; Saut, J.-C.; Sparber, C., Dispersive blow-up for nonlinear Schrödinger equations revisited, J. Math. Pures Appl., 102, 782-811 (2014) · Zbl 1304.35132
[7] Bona, J. L.; Saut, J.-C., Dispersive blow-up, II: Schrödinger-type equations, optical and oceanic rogue waves, Chin. Ann. Math., Ser. B, 31, 793-818 (2010) · Zbl 1204.35132
[8] Bona, J. L.; Sun, S.-M.; Zhang, B.-Y., A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Am. Math. Soc., 354, 427-490 (2001) · Zbl 0988.35141
[9] Bona, J. L.; Sun, S.-M.; Zhang, B.-Y., Conditional and unconditional well-posedness of nonlinear evolution equations, Adv. Differ. Equ., 9, 241-265 (2004) · Zbl 1103.35092
[10] Bona, J. L.; Sun, S.-M.; Zhang, B.-Y., Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications, Dyn. Partial Differ. Equ., 3, 1-70 (2006) · Zbl 1152.35099
[11] Bona, J. L.; Sun, S.-M.; Zhang, B.-Y., Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 25, 1145-1185 (2008) · Zbl 1157.35090
[12] Bona, J. L.; Winther, R., The Korteweg-de Vries equation posed in a quarter plane, SIAM J. Math. Anal., 14, 1056-1106 (1983) · Zbl 0529.35069
[13] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part I: Schrödinger equations, Geom. Funct. Anal., 3, 107-156 (1993) · Zbl 0787.35097
[14] Bourgain, J., Global Solutions of Nonlinear Schrödinger Equations, Colloquium Publication, vol. 46 (1999), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0933.35178
[15] Brézis, H.; Gallouet, T., Nonlinear Schrödinger evolution equation, Nonlinear Anal. TMA, 4, 677-681 (1980) · Zbl 0451.35023
[16] Bu, C., An initial-boundary value problem of the nonlinear Schrödinger equation, Appl. Anal., 53, 241-254 (1994) · Zbl 0842.35112
[17] Bu, C., Nonlinear Schrödinger equation on the semi-infinite line, Chin. Ann. Math., 21, 1-12 (2000)
[18] Bu, C.; Shull, R.; Wang, H.; Chu, M., Well-posedness, decay estimates and blow-up theorem for the forced NLS, J. Partial Differ. Equ., 14, 61-70 (2001) · Zbl 0977.35130
[19] Bu, C.; Tsutaya, K.; Zhang, C., Nonlinear Schrödinger equation with inhomogeneous Dirichlet boundary data, J. Math. Phys., 46, Article 083504 pp. (2005) · Zbl 1110.35081
[20] Cazenave, T., Semilinear Schrödinger Equations (2003), American Math. Soc.: American Math. Soc. Providence, RI · Zbl 1055.35003
[21] Cazenave, T.; Fang, D.; Han, Z., Continuous dependence for NLS in fractional order spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 28, 135-147 (2011) · Zbl 1209.35124
[22] Cazenave, T.; Weissler, F. B., The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\), Nonlinear Anal. TMA, 14, 807-836 (1990) · Zbl 0706.35127
[23] Carroll, R.; Bu, C., Solution of the forced nonlinear Schrödinger equation (NLS) using PDE techniques, Appl. Anal., 41, 33-51 (1991) · Zbl 0754.35155
[24] Chabchoub, A.; Hoffmann, N. P.; Akhmediev, N., Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106, Article 204502 pp. (2011)
[25] Colliander, J. E.; Kenig, C. E., The generalized Korteweg-de Vries equation on the half line, Commun. Partial Differ. Equ., 27, 2187-2266 (2002) · Zbl 1041.35064
[26] Craig, W., An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Commun. Partial Differ. Equ., 10, 787-1003 (1985) · Zbl 0577.76030
[27] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations, I: the Cauchy problem, general case, J. Funct. Anal., 32, 1-32 (1979) · Zbl 0396.35028
[28] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations, II: scattering theory, general case, J. Funct. Anal., 32, 33-71 (1979) · Zbl 0396.35029
[29] Hadamard, J., Sur les problèmes aux dérivées partielles et leur signifiication physique, Princeton Univ. Bull., 49-52 (1902)
[30] Hadamard, J., Leçons sur les propagation des ondes et les equations de l’hydrodynamics (1903), Hermann: Hermann Paris · JFM 34.0793.06
[31] Han, Z.; Fan, D., On the unconditional uniqueness for NLS in \(H^s\), SIAM J. Math. Anal., 45, 1505-1526 (2013) · Zbl 1291.35346
[32] Holmer, J., The initial-boundary value problem for the \(1-d\) nonlinear Schrödinger equation on the half-line, Differ. Integral Equ., 18, 647-668 (2005) · Zbl 1212.35448
[33] Holmer, J., The initial-boundary value problem for the Korteweg-de Vries equation, Commun. Partial Differ. Equ., 31, 1151-1190 (2006) · Zbl 1111.35062
[34] Kamvissis, S., Semiclassical nonlinear Schrödinger on the half line, J. Math. Phys., 44, 5849-5868 (2003) · Zbl 1063.37067
[35] Kato, T., On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Phys. Theor., 46, 113-129 (1987) · Zbl 0632.35038
[36] Kato, T., On nonlinear Schrödinger equations, II: \(H^s\)-solutions and unconditional well-posedness, J. Anal. Math., 67, 281-306 (1995) · Zbl 0848.35124
[37] Killip, R.; Visan, M.; Zhang, X., Quintic NLS in the exterior of a strictly convex obstacle, Am. J. Math., 138, 1193-1346 (2016) · Zbl 1366.35169
[38] Linares, F.; Ponce, G., Introduction to Nonlinear Dispersive Equations, Universitext (2009), Springer: Springer New York · Zbl 1178.35004
[39] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, vol. 1 (1972), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York · Zbl 0227.35001
[40] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, vol. 2 (1972), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York · Zbl 0227.35001
[41] Peregrine, D. H., Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. B, 25, 16-43 (1983) · Zbl 0526.76018
[42] Schneider, G.; Wayne, C. E., The long-wave limit for the water wave problem, I: the case of zero surface tension, Commun. Pure Appl. Math., 53, 1475-1535 (2000) · Zbl 1034.76011
[43] Stein, E. M., Singular Integrals and Differentiability of Functions (1970), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0207.13501
[44] Strauss, W.; Bu, C., Inhomogeneous boundary value problem for a nonlinear Schrödinger equation, J. Differ. Equ., 173, 79-91 (2001) · Zbl 1055.35119
[45] Tartar, L., Interpolation non linéaire et régularité, J. Funct. Anal., 9, 469-489 (1972) · Zbl 0241.46035
[46] Tsutsumi, Y., Global solutions of the nonlinear Schrödinger equations in exterior domains, Commun. Partial Differ. Equ., 8, 1337-1374 (1983) · Zbl 0542.35027
[47] Tsutsumi, Y., \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkc. Ekvacioj, 30, 115-125 (1987) · Zbl 0638.35021
[48] Tsutsumi, M., On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equations in two space dimensions, Nonlinear Anal. TMA, 13, 1051-1056 (1989) · Zbl 0693.35133
[49] Tsutsumi, M., On global solutions to the initial-boundary value problem for the nonlinear Schrödinger equations in exterior domains, Commun. Partial Differ. Equ., 16, 885-907 (1991) · Zbl 0738.35093
[50] Win, Y. Y.S.; Tsutsumi, Y., Unconditional uniqueness of solution for the Cauchy problem of the nonlinear Schrödinger equation, Hokkaido Math. J., 37, 839-859 (2008) · Zbl 1173.35696
[51] Zakharov, V. E.; Manakov, S. V., On the complete integrability of a nonlinear Schrödinger equation, Theor. Math. Phys., 19, 551-559 (1974) · Zbl 0298.35016
[52] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, J. Exp. Theor. Phys., 34, 62-69 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.