×

Invariance of Unruh and Hawking radiation under matter-induced supertranslations. (English) Zbl 1416.83045

Summary: Matter fields are supertranslated upon crossing a shock wave, which leads to entanglement of the quantum vacuum between the two regions on either side of the shock wave. We probe this entanglement for a scalar field in a planar shock wave background by computing the Bogoliubov transformation between the inertial and uniformly accelerated observer. The resulting Bogoliubov coefficients are shown to reproduce the standard Unruh effect without dependence on the form factor of the shock wave. In contrast, excited states lead to observables that depend upon the form factor. In the context of nonspherical gravitational collapse, we comment that the angular dependence of the limiting advanced time leads to similar supertranslation effects that do not affect the Hawking spectrum but do affect scattering amplitudes.

MSC:

83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T60 Supersymmetric field theories in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations
81U05 \(2\)-body potential quantum scattering theory

References:

[1] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[2] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim.4 (1972) 737 [INSPIRE]. · doi:10.1007/BF02757029
[3] J.D. Bekenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333 [INSPIRE]. · Zbl 1369.83037
[4] G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett.B 198 (1987) 61 [INSPIRE].
[5] D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions, Int. J. Mod. Phys.A 3 (1988) 1615 [INSPIRE].
[6] T. Banks and W. Fischler, A Model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].
[7] D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational collapse, JHEP02 (2008) 049 [arXiv:0712.1209] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/049
[8] M. Ciafaloni, D. Colferai, F. Coradeschi and G. Veneziano, Unified limiting form of graviton radiation at extreme energies, Phys. Rev.D 93 (2016) 044052 [arXiv:1512.00281] [INSPIRE].
[9] P.C. Aichelburg and R.U. Sexl, On the Gravitational field of a massless particle, Gen. Rel. Grav.2 (1971) 303 [INSPIRE]. · doi:10.1007/BF00758149
[10] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP07 (2014) 152 [arXiv:1312.2229] [INSPIRE]. · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[11] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE]. · Zbl 1388.83261
[12] A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE]. · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[13] Y.B. Zeldovich and A.G. Polnarev., Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron.18 (1974) 17.
[14] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett.67 (1991) 1486 [INSPIRE]. · Zbl 0990.83504 · doi:10.1103/PhysRevLett.67.1486
[15] L. Bieri, P. Chen and S.-T. Yau, Null Asymptotics of Solutions of the Einstein-Maxwell Equations in General Relativity and Gravitational Radiation, Adv. Theor. Math. Phys.15 (2011) 1085 [arXiv:1011.2267] [INSPIRE]. · Zbl 1251.83015 · doi:10.4310/ATMP.2011.v15.n4.a5
[16] L. Bieri and D. Garfinkle, Perturbative and gauge invariant treatment of gravitational wave memory, Phys. Rev.D 89 (2014) 084039 [arXiv:1312.6871] [INSPIRE].
[17] S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE]. · doi:10.1103/PhysRev.140.B516
[18] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A 269 (1962) 21. · Zbl 0106.41903
[19] R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev.128 (1962) 2851 [INSPIRE]. · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[20] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A 270 (1962) 103. · Zbl 0101.43605
[21] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[22] G. Compère and A. Fiorucci, Advanced Lectures on General Relativity, Lect. Notes Phys.952 (2019) 1 [arXiv:1801.07064] [INSPIRE]. · Zbl 1419.83003 · doi:10.1007/978-3-030-04260-8_1
[23] T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys.B 253 (1985) 173 [INSPIRE].
[24] L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at the Black Hole Horizon, Phys. Rev. Lett.116 (2016) 091101 [arXiv:1511.08687] [INSPIRE]. · Zbl 1390.83191
[25] S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE]. · doi:10.1103/PhysRevLett.116.231301
[26] G. Compère and J. Long, Vacua of the gravitational field, JHEP07 (2016) 137 [arXiv:1601.04958] [INSPIRE]. · Zbl 1390.83185 · doi:10.1007/JHEP07(2016)137
[27] G. Compère and J. Long, Classical static final state of collapse with supertranslation memory, Class. Quant. Grav.33 (2016) 195001 [arXiv:1602.05197] [INSPIRE]. · Zbl 1349.83042 · doi:10.1088/0264-9381/33/19/195001
[28] A. Averin, G. Dvali, C. Gomez and D. Lüst, Gravitational Black Hole Hair from Event Horizon Supertranslations, JHEP06 (2016) 088 [arXiv:1601.03725] [INSPIRE]. · Zbl 1388.83375 · doi:10.1007/JHEP06(2016)088
[29] S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP05 (2017) 161 [arXiv:1611.09175] [INSPIRE]. · Zbl 1380.83143 · doi:10.1007/JHEP05(2017)161
[30] P. Mao, X. Wu and H. Zhang, Soft hairs on isolated horizon implanted by electromagnetic fields, Class. Quant. Grav.34 (2017) 055003 [arXiv:1606.03226] [INSPIRE]. · Zbl 1368.83043
[31] A. Averin, G. Dvali, C. Gomez and D. Lüst, Goldstone origin of black hole hair from supertranslations and criticality, Mod. Phys. Lett.A 31 (2016) 1630045 [arXiv:1606.06260] [INSPIRE]. · Zbl 1353.83003
[32] L. Donnay, G. Giribet, H.A. González and M. Pino, Extended Symmetries at the Black Hole Horizon, JHEP09 (2016) 100 [arXiv:1607.05703] [INSPIRE]. · Zbl 1390.83191 · doi:10.1007/JHEP09(2016)100
[33] S. Kolekar and J. Louko, Gravitational memory for uniformly accelerated observers, Phys. Rev.D 96 (2017) 024054 [arXiv:1703.10619] [INSPIRE].
[34] P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Soft gravitons and the memory effect for plane gravitational waves, Phys. Rev.D 96 (2017) 064013 [arXiv:1705.01378] [INSPIRE].
[35] R.K. Mishra and R. Sundrum, Asymptotic Symmetries, Holography and Topological Hair, JHEP01 (2018) 014 [arXiv:1706.09080] [INSPIRE]. · Zbl 1384.81115 · doi:10.1007/JHEP01(2018)014
[36] C. Gomez and S. Zell, Black Hole Evaporation, Quantum Hair and Supertranslations, Eur. Phys. J.C 78 (2018) 320 [arXiv:1707.08580] [INSPIRE].
[37] A. Chatterjee and D.A. Lowe, BMS symmetry, soft particles and memory, Class. Quant. Grav.35 (2018) 094001 [arXiv:1712.03211] [INSPIRE]. · Zbl 1391.83011
[38] S. Kolekar and J. Louko, Quantum memory for Rindler supertranslations, Phys. Rev.D 97 (2018) 085012 [arXiv:1709.07355] [INSPIRE].
[39] C.-S. Chu and Y. Koyama, Soft Hair of Dynamical Black Hole and Hawking Radiation, JHEP04 (2018) 056 [arXiv:1801.03658] [INSPIRE]. · Zbl 1390.83184 · doi:10.1007/JHEP04(2018)056
[40] J. Kirklin, Localisation of Soft Charges and Thermodynamics of Softly Hairy Black Holes, Class. Quant. Grav.35 (2018) 175010 [arXiv:1802.08145] [INSPIRE]. · Zbl 1409.83103 · doi:10.1088/1361-6382/aad204
[41] B. Cvetković and D. Simić, Near horizon OTT black hole asymptotic symmetries and soft hair, Chin. Phys.C 43 (2019) 013109 [arXiv:1804.00484] [INSPIRE].
[42] A. Averin, Schwarzschild/CFT from soft black hole hair?, JHEP01 (2019) 092 [arXiv:1808.09923] [INSPIRE]. · Zbl 1409.83084
[43] S. Choi and R. Akhoury, Soft Photon Hair on Schwarzschild Horizon from a Wilson Line Perspective, JHEP12 (2018) 074 [arXiv:1809.03467] [INSPIRE]. · Zbl 1405.83026 · doi:10.1007/JHEP12(2018)074
[44] L. Donnay, G. Giribet, H.A. González and A. Puhm, Black hole memory effect, Phys. Rev.D 98 (2018) 124016 [arXiv:1809.07266] [INSPIRE].
[45] S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black Hole Entropy and Soft Hair, JHEP12 (2018) 098 [arXiv:1810.01847] [INSPIRE]. · Zbl 1405.83029 · doi:10.1007/JHEP12(2018)098
[46] S. Haco, M.J. Perry and A. Strominger, Kerr-Newman Black Hole Entropy and Soft Hair, arXiv:1902.02247 [INSPIRE]. · Zbl 1405.83029
[47] A. Strominger, Black Hole Information Revisited, arXiv:1706.07143 [INSPIRE]. · Zbl 0972.83566
[48] W. Donnelly and S.B. Giddings, How is quantum information localized in gravity?, Phys. Rev.D 96 (2017) 086013 [arXiv:1706.03104] [INSPIRE].
[49] D. Marolf, The Black Hole information problem: past, present and future, Rept. Prog. Phys.80 (2017) 092001 [arXiv:1703.02143] [INSPIRE].
[50] G. Compère, Are quantum corrections on horizon scale physically motivated?, 2019, arXiv:1902.04504 [INSPIRE].
[51] M. Mirbabayi and M. Porrati, Dressed Hard States and Black Hole Soft Hair, Phys. Rev. Lett.117 (2016) 211301 [arXiv:1607.03120] [INSPIRE]. · doi:10.1103/PhysRevLett.117.211301
[52] R. Bousso and M. Porrati, Soft Hair as a Soft Wig, Class. Quant. Grav.34 (2017) 204001 [arXiv:1706.00436] [INSPIRE]. · Zbl 1380.83126 · doi:10.1088/1361-6382/aa8be2
[53] R. Bousso and M. Porrati, Observable Supertranslations, Phys. Rev.D 96 (2017) 086016 [arXiv:1706.09280] [INSPIRE].
[54] B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP12 (2016) 095 [arXiv:1607.08599] [INSPIRE]. · Zbl 1390.83141 · doi:10.1007/JHEP12(2016)095
[55] D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, Infrared quantum information, Phys. Rev. Lett.119 (2017) 180502 [arXiv:1706.03782] [INSPIRE]. · doi:10.1103/PhysRevLett.119.180502
[56] R. Javadinezhad, U. Kol and M. Porrati, Comments on Lorentz Transformations, Dressed Asymptotic States and Hawking Radiation, JHEP01 (2019) 089 [arXiv:1808.02987] [INSPIRE]. · Zbl 1409.83100 · doi:10.1007/JHEP01(2019)089
[57] C. Klimčík, Quantum Field Theory in Gravitational Shock Wave Background, Phys. Lett.B 208 (1988) 373 [INSPIRE].
[58] G.W. Gibbons, Quantized Fields Propagating in Plane Wave Space-Times, Commun. Math. Phys.45 (1975) 191 [INSPIRE]. · doi:10.1007/BF01629249
[59] M. Hortacsu, Quantum Fluctuations in the Field of an Impulsive Spherical Gravitational Wave, Class. Quant. Grav.7 (1990) L165 [Erratum ibid.9 (1992) 799] [INSPIRE].
[60] M. Hortacsu, Quantum fluctuations of a spherical gravitational shock wave, Class. Quant. Grav.9 (1992) 1619 [INSPIRE]. · doi:10.1088/0264-9381/9/6/016
[61] M. Dorca and E. Verdaguer, Quantum fields interacting with colliding plane waves: particle creation, Nucl. Phys.B 403 (1993) 770 [INSPIRE]. · Zbl 1043.83531
[62] M. Dorca and E. Verdaguer, Particle creation in a colliding plane wave space-time: Wave packet quantization, Phys. Rev.D 50 (1994) 2631 [gr-qc/9403015] [INSPIRE]. · Zbl 0863.58084
[63] M. Dorca and E. Verdaguer, Quantum fields interacting with colliding plane waves: The Stress energy tensor and back reaction, Nucl. Phys.B 484 (1997) 435 [gr-qc/9605007] [INSPIRE]. · Zbl 0925.81127
[64] M. Hortacsu and K. Ulker, Gravitational shock waves and vacuum fluctuations, Class. Quant. Grav.15 (1998) 1415 [hep-th/9802072] [INSPIRE]. · Zbl 0942.83030 · doi:10.1088/0264-9381/15/5/022
[65] I.I. Shapiro, Fourth Test of General Relativity, Phys. Rev. Lett.13 (1964) 789 [INSPIRE]. · doi:10.1103/PhysRevLett.13.789
[66] X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE]. · Zbl 1388.83093 · doi:10.1007/JHEP02(2016)020
[67] L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys.80 (2008) 787 [arXiv:0710.5373] [INSPIRE]. · Zbl 1205.83030 · doi:10.1103/RevModPhys.80.787
[68] S. Takagi, Vacuum noise and stress induced by uniform accelerator: Hawking-Unruh effect in Rindler manifold of arbitrary dimensions, Prog. Theor. Phys. Suppl.88 (1986) 1 [INSPIRE]. · doi:10.1143/PTPS.88.1
[69] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [INSPIRE].
[70] L.H. Ford, Quantum field theory in curved space-time, in Particles and fields. Proceedings, 9th Jorge Andre Swieca Summer School, Campos do Jordao, Brazil, February 16-28, 1997, pp. 345-388 (1997) [gr-qc/9707062] [INSPIRE]. · Zbl 0970.53048
[71] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev.D 14 (1976) 2460 [INSPIRE].
[72] M. Pate, A.-M. Raclariu and A. Strominger, Gravitational Memory in Higher Dimensions, JHEP06 (2018) 138 [arXiv:1712.01204] [INSPIRE]. · Zbl 1395.83100
[73] M. Campiglia and L. Coito, Asymptotic charges from soft scalars in even dimensions, Phys. Rev.D 97 (2018) 066009 [arXiv:1711.05773] [INSPIRE].
[74] P. Mao and H. Ouyang, Note on soft theorems and memories in even dimensions, Phys. Lett.B 774 (2017) 715 [arXiv:1707.07118] [INSPIRE]. · Zbl 1403.81040
[75] R.M. Wald, Stimulated Emission Effects in Particle Creation Near Black Holes, Phys. Rev.D 13 (1976) 3176 [INSPIRE].
[76] J.D. Bekenstein and A. Meisels, Einstein a and B Coefficients for a Black Hole, Phys. Rev.D 15 (1977) 2775 [INSPIRE].
[77] P. Panangaden and R.M. Wald, Probability Distribution for Radiation from a Black Hole in the Presence of Incoming Radiation, Phys. Rev.D 16 (1977) 929 [INSPIRE].
[78] J.F. Colombeau, Multiplication of distributions, Bull. Am. Math. Soc. (N.S.)23 (1990) 251. · Zbl 0731.46023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.