×

Asymptotic symmetries, holography and topological hair. (English) Zbl 1384.81115

Summary: Asymptotic symmetries of \(\mathrm{AdS}_{4}\) quantum gravity and gauge theory are derived by coupling the holographically dual \(\mathrm{CFT}_{3}\) to Chern-Simons gauge theory and 3D gravity in a “probe” (large-level) limit. Despite the fact that the three-dimensional \(\mathrm{AdS}_{4}\) boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of \(\mathrm{AdS}_{4}\) quantum gravity. An \(\mathrm{AdS}_{4}\) analog of Minkowski “super-rotation” asymptotic symmetry is probed by 3D Einstein gravity, yielding \(\mathrm{CFT}_{2}\) structure (in a large central charge limit), via \(\mathrm{AdS}_{3}\) foliation of \(\mathrm{AdS}_{4}\) and the \(\mathrm{AdS}_{3}/\mathrm{CFT}_{2}\) correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of \(\mathrm{AdS}_{4}\), as soft/boundary limits of 4D gauge theory, rather than “put in by hand” as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for \(\mathrm{AdS}_{4}\) than for \(Mink_{4}\), such as non-zero 4D particle masses, 4D non-perturbative “hard” effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian \(\mathrm{AdS}_{4}\), \(\mathrm{CFT}_{3}\) and \(\mathrm{CFT}_{2}\). Relatedly, the \(\mathrm{CFT}_{2}\) structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of “hair” for black holes and other complex 4D states. An \(\mathrm{AdS}_{4}\) analog of Minkowski “memory” effects is derived, but with late-time memory of earlier events being replaced by (holographic) “shadow” effects. Lessons from \(\mathrm{AdS}_{4}\) provide hints for better understanding Minkowski asymptotic symmetries, the 3D structure of its soft limits, and Minkowski holography.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
58J28 Eta-invariants, Chern-Simons invariants
83C45 Quantization of the gravitational field
83C57 Black holes

References:

[1] A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[2] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A 269 (1962) 21 [INSPIRE]. · Zbl 0106.41903
[3] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A 270 (1962) 103 [INSPIRE]. · Zbl 0101.43605
[4] G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett.105 (2010) 111103 [arXiv:0909.2617] [INSPIRE]. · doi:10.1103/PhysRevLett.105.111103
[5] A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP07 (2014) 151 [arXiv:1308.0589] [INSPIRE]. · Zbl 1333.81273 · doi:10.1007/JHEP07(2014)151
[6] T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE]. · doi:10.1007/JHEP10(2014)112
[7] T. He, P. Mitra and A. Strominger, 2D Kac-Moody symmetry of 4D Yang-Mills theory, JHEP10 (2016) 137 [arXiv:1503.02663] [INSPIRE]. · Zbl 1390.81630 · doi:10.1007/JHEP10(2016)137
[8] D. Kapec, M. Pate and A. Strominger, New symmetries of QED, arXiv:1506.02906 [INSPIRE]. · Zbl 1383.81351
[9] A. Strominger, Magnetic corrections to the soft photon theorem, Phys. Rev. Lett.116 (2016) 031602 [arXiv:1509.00543] [INSPIRE]. · Zbl 1356.81175 · doi:10.1103/PhysRevLett.116.031602
[10] A. Strominger, On BMS invariance of gravitational scattering, JHEP07 (2014) 152 [arXiv:1312.2229] [INSPIRE]. · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[11] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE]. · Zbl 1388.83261 · doi:10.1007/JHEP05(2015)151
[12] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S-matrix, JHEP08 (2014) 058 [arXiv:1406.3312] [INSPIRE]. · doi:10.1007/JHEP08(2014)058
[13] V. Lysov, S. Pasterski and A. Strominger, Low’s subleading soft theorem as a symmetry of QED, Phys. Rev. Lett.113 (2014) 111601 [arXiv:1407.3814] [INSPIRE]. · doi:10.1103/PhysRevLett.113.111601
[14] A. Mohd, A note on asymptotic symmetries and soft-photon theorem, JHEP02 (2015) 060 [arXiv:1412.5365] [INSPIRE]. · Zbl 1387.83029 · doi:10.1007/JHEP02(2015)060
[15] T.T. Dumitrescu, T. He, P. Mitra and A. Strominger, Infinite-dimensional fermionic symmetry in supersymmetric gauge theories, arXiv:1511.07429 [INSPIRE].
[16] S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE]. · doi:10.1103/PhysRev.140.B516
[17] F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev.110 (1958) 974 [INSPIRE]. · Zbl 0082.42802 · doi:10.1103/PhysRev.110.974
[18] T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett.20 (1968) 86 [INSPIRE]. · doi:10.1103/PhysRevLett.20.86
[19] C.D. White, Factorization properties of soft graviton amplitudes, JHEP05 (2011) 060 [arXiv:1103.2981] [INSPIRE]. · Zbl 1296.83030 · doi:10.1007/JHEP05(2011)060
[20] F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
[21] L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav.30 (2013) 195009 [arXiv:1307.5098] [INSPIRE]. · Zbl 1277.83034 · doi:10.1088/0264-9381/30/19/195009
[22] S. Pasterski, Asymptotic symmetries and electromagnetic memory, JHEP09 (2017) 154 [arXiv:1505.00716] [INSPIRE]. · Zbl 1382.83015 · doi:10.1007/JHEP09(2017)154
[23] L. Susskind, Electromagnetic memory, arXiv:1507.02584 [INSPIRE]. · Zbl 0117.24702
[24] Y. Zeldovich and A. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron.18 (1974) 17 [Astron. Zh.51 (1974) 30].
[25] V.B. Braginsky and K.S. Thorne, Gravitational-wave bursts with memory and experimental prospects, Nature327 (1987) 123. · doi:10.1038/327123a0
[26] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett.67 (1991) 1486 [INSPIRE]. · Zbl 0990.83504 · doi:10.1103/PhysRevLett.67.1486
[27] A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE]. · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[28] S. Pasterski, A. Strominger and A. Zhiboedov, New gravitational memories, JHEP12 (2016) 053 [arXiv:1502.06120] [INSPIRE]. · Zbl 1390.83024 · doi:10.1007/JHEP12(2016)053
[29] P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Soft gravitons and the memory effect for plane gravitational waves, Phys. Rev.D 96 (2017) 064013 [arXiv:1705.01378] [INSPIRE].
[30] P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, The memory effect for plane gravitational waves, Phys. Lett.B 772 (2017) 743 [arXiv:1704.05997] [INSPIRE]. · doi:10.1016/j.physletb.2017.07.050
[31] S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE]. · doi:10.1103/PhysRevLett.116.231301
[32] S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP05 (2017) 161 [arXiv:1611.09175] [INSPIRE]. · Zbl 1380.83143 · doi:10.1007/JHEP05(2017)161
[33] D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, Infrared quantum information, Phys. Rev. Lett.119 (2017) 180502 [arXiv:1706.03782] [INSPIRE]. · doi:10.1103/PhysRevLett.119.180502
[34] A. Strominger, Black hole information revisited, arXiv:1706.07143 [INSPIRE]. · Zbl 0972.83566
[35] D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D stress tensor for 4D gravity, Phys. Rev. Lett.119 (2017) 121601 [arXiv:1609.00282] [INSPIRE]. · doi:10.1103/PhysRevLett.119.121601
[36] C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP01 (2017) 112 [arXiv:1609.00732] [INSPIRE]. · Zbl 1373.81319 · doi:10.1007/JHEP01(2017)112
[37] J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys.B 665 (2003) 545 [hep-th/0303006] [INSPIRE]. · Zbl 1038.83030
[38] S.N. Solodukhin, Reconstructing Minkowski space-time, IRMA Lect. Math. Theor. Phys.8 (2005) 123 [hep-th/0405252] [INSPIRE]. · Zbl 1078.81065
[39] Y.-T. Chien, M.D. Schwartz, D. Simmons-Duffin and I.W. Stewart, Jet physics from static charges in AdS, Phys. Rev.D 85 (2012) 045010 [arXiv:1109.6010] [INSPIRE].
[40] M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP07 (2015) 115 [arXiv:1505.05346] [INSPIRE]. · Zbl 1388.83199 · doi:10.1007/JHEP07(2015)115
[41] R.N.C. Costa, Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes, JHEP11 (2012) 046 [arXiv:1206.3142] [INSPIRE]. · doi:10.1007/JHEP11(2012)046
[42] E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys.B 311 (1988) 46 [INSPIRE]. · Zbl 1258.83032
[43] A. Strominger, The dS/CFT correspondence, JHEP10 (2001) 034 [hep-th/0106113] [INSPIRE]. · doi:10.1088/1126-6708/2001/10/034
[44] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev.115 (1959) 485 [INSPIRE]. · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[45] G.W. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys.B 360 (1991) 362 [INSPIRE]. · doi:10.1016/0550-3213(91)90407-O
[46] X.G. Wen, Non-abelian statistics in the fractional quantum Hall states, Phys. Rev. Lett.66 (1991) 802 [INSPIRE]. · Zbl 0968.81553 · doi:10.1103/PhysRevLett.66.802
[47] R. Bousso and M. Porrati, Soft hair as a soft wig, Class. Quant. Grav.34 (2017) 204001 [arXiv:1706.00436] [INSPIRE]. · Zbl 1380.83126 · doi:10.1088/1361-6382/aa8be2
[48] W. Donnelly and S.B. Giddings, How is quantum information localized in gravity?, Phys. Rev.D 96 (2017) 086013 [arXiv:1706.03104] [INSPIRE].
[49] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[50] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[51] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[52] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[53] J. Polchinski, Introduction to gauge/gravity duality, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010). String theory and its applications: from MeV to the Planck scale, Boulder CO U.S.A., 1-25 June 2010, pg. 3 [arXiv:1010.6134] [INSPIRE].
[54] R. Sundrum, From fixed points to the fifth dimension, Phys. Rev.D 86 (2012) 085025 [arXiv:1106.4501] [INSPIRE].
[55] J. Penedones, TASI lectures on AdS/CFT, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: new frontiers in fields and strings (TASI 2015), Boulder CO U.S.A., 1-26 June 2015, pg. 75 [arXiv:1608.04948] [INSPIRE].
[56] A. Ashtekar and S. Das, Asymptotically anti-de Sitter space-times: conserved quantities, Class. Quant. Grav.17 (2000) L17 [hep-th/9911230] [INSPIRE]. · Zbl 0943.83023 · doi:10.1088/0264-9381/17/2/101
[57] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE]. · Zbl 0584.53039 · doi:10.1007/BF01211590
[58] A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev.D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].
[59] G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav.24 (2007) F15 [gr-qc/0610130] [INSPIRE]. · Zbl 1111.83045
[60] M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, in Unity from duality: gravity, gauge theory and strings. Proceedings, NATO Advanced Study Institute, Euro Summer School, 76thsession, Les Houches France, 30 July-31 August 2001, pg. 423 [hep-th/0110007] [INSPIRE].
[61] D. Anninos, G.S. Ng and A. Strominger, Asymptotic symmetries and charges in de Sitter space, Class. Quant. Grav.28 (2011) 175019 [arXiv:1009.4730] [INSPIRE]. · Zbl 1225.83019 · doi:10.1088/0264-9381/28/17/175019
[62] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys.121 (1989) 351 [INSPIRE]. · Zbl 0667.57005 · doi:10.1007/BF01217730
[63] S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys.B 326 (1989) 108 [INSPIRE]. · doi:10.1016/0550-3213(89)90436-7
[64] E. Witten, On holomorphic factorization of WZW and coset models, Commun. Math. Phys.144 (1992) 189 [INSPIRE]. · Zbl 0766.53068 · doi:10.1007/BF02099196
[65] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS3/CFT2correspondence, hep-th/0403225 [INSPIRE].
[66] S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett.48 (1982) 975 [INSPIRE]. · doi:10.1103/PhysRevLett.48.975
[67] S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys.140 (1982) 372 [Erratum ibid.185 (1988) 406] [Annals Phys.281 (2000) 409] [INSPIRE].
[68] J.H. Horne and E. Witten, Conformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett.62 (1989) 501 [INSPIRE]. · doi:10.1103/PhysRevLett.62.501
[69] H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holography — lock, stock and barrel, Phys. Rev.D 85 (2012) 064033 [arXiv:1110.5644] [INSPIRE].
[70] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE]. · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[71] R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes, JHEP01 (2000) 007 [hep-th/9911043] [INSPIRE]. · Zbl 0990.83523 · doi:10.1088/1126-6708/2000/01/007
[72] A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro blocks from Wilson lines and background-independent operators, JHEP07 (2017) 092 [arXiv:1612.06385] [INSPIRE]. · Zbl 1380.81314 · doi:10.1007/JHEP07(2017)092
[73] A. Karch and L. Randall, Locally localized gravity, JHEP05 (2001) 008 [hep-th/0011156] [INSPIRE]. · Zbl 1047.81062 · doi:10.1088/1126-6708/2001/05/008
[74] R. Bousso and L. Randall, Holographic domains of anti-de Sitter space, JHEP04 (2002) 057 [hep-th/0112080] [INSPIRE]. · doi:10.1088/1126-6708/2002/04/057
[75] P.K. Townsend and B. Zhang, Thermodynamics of “exotic” Bañados-Teitelboim-Zanelli black holes, Phys. Rev. Lett.110 (2013) 241302 [arXiv:1302.3874] [INSPIRE]. · doi:10.1103/PhysRevLett.110.241302
[76] A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP08 (2010) 004 [arXiv:0912.1090] [INSPIRE]. · Zbl 1291.81346 · doi:10.1007/JHEP08(2010)004
[77] A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett.105 (2010) 171601 [arXiv:1006.3354] [INSPIRE]. · doi:10.1103/PhysRevLett.105.171601
[78] A. Bagchi and R. Fareghbal, BMS/GCA redux: towards flatspace holography from non-relativistic symmetries, JHEP10 (2012) 092 [arXiv:1203.5795] [INSPIRE]. · doi:10.1007/JHEP10(2012)092
[79] G. Barnich, A. Gomberoff and H.A. Gonzalez, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev.D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].
[80] C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav.31 (2014) 092001 [arXiv:1402.5894] [INSPIRE]. · Zbl 1291.83084 · doi:10.1088/0264-9381/31/9/092001
[81] C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups, J. Phys.A 47 (2014) 335204 [arXiv:1403.4213] [INSPIRE]. · Zbl 1297.83028
[82] K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett.B 387 (1996) 513 [hep-th/9607207] [INSPIRE]. · doi:10.1016/0370-2693(96)01088-X
[83] A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP04 (1999) 021 [hep-th/9902033] [INSPIRE]. · Zbl 0953.81097 · doi:10.1088/1126-6708/1999/04/021
[84] E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE]. · Zbl 1160.81457
[85] R.K. Mishra, A. Mohd and R. Sundrum, in preparation.
[86] Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons and gravitons, Phys. Rev.D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].
[87] S. He, Y.-T. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP12 (2014) 115 [arXiv:1405.1410] [INSPIRE]. · doi:10.1007/JHEP12(2014)115
[88] F. Cachazo and E.Y. Yuan, Are soft theorems renormalized?, arXiv:1405.3413 [INSPIRE].
[89] Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev.D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].
[90] T. He, D. Kapec, A.-M. Raclariu and A. Strominger, Loop-corrected Virasoro symmetry of 4D quantum gravity, JHEP08 (2017) 050 [arXiv:1701.00496] [INSPIRE]. · Zbl 1381.83034 · doi:10.1007/JHEP08(2017)050
[91] Y. Hamada, M.-S. Seo and G. Shiu, Memory in de Sitter space and Bondi-Metzner-Sachs-like supertranslations, Phys. Rev.D 96 (2017) 023509 [arXiv:1702.06928] [INSPIRE].
[92] S. Deser and R.I. Nepomechie, Anomalous propagation of gauge fields in conformally flat spaces, Phys. Lett.B 132 (1983) 321 [INSPIRE]. · doi:10.1016/0370-2693(83)90317-9
[93] S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys.154 (1984) 396 [INSPIRE]. · doi:10.1016/0003-4916(84)90156-8
[94] S.J. Haco, S.W. Hawking, M.J. Perry and J.L. Bourjaily, The conformal BMS group, JHEP11 (2017) 012 [arXiv:1701.08110] [INSPIRE]. · Zbl 1383.81222 · doi:10.1007/JHEP11(2017)012
[95] S. Weinberg, Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix, Phys. Lett.9 (1964) 357. · Zbl 0122.22105 · doi:10.1016/0031-9163(64)90396-8
[96] S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE]. · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[97] S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations, Phys. Rev.138 (1965) B988 [INSPIRE]. · doi:10.1103/PhysRev.138.B988
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.