×

Event-triggered fault tolerant control for spacecraft formation attitude synchronization with limited data communication. (English) Zbl 1415.93241

Summary: This paper investigates the leader-following attitude consensus problem of a group of \(n\)-th spacecrafts with actuator fault and limited data communication, where the event-triggered based sending mechanism is considered to decrease communication burthen. In this design, unknown actuator faults and external disturbances are considered, and an event-triggered based adaptive distributed cooperative attitude control law is developed to solve the multiple spacecrafts formation control problem. It is shown that leader-following attitude synchronization can be achieved under the designed event-triggered control law. Finally, a simulation example is provided to illustrate the effectiveness of the proposed attitude coordination control techniques.

MSC:

93D99 Stability of control systems
93C95 Application models in control theory
93A13 Hierarchical systems
93C65 Discrete event control/observation systems
93B12 Variable structure systems
Full Text: DOI

References:

[1] Abdessameud, A.; Tayebi, A., Attitude synchronization of a group of spacecraft without velocity measurements, IEEE Trans. Automat. Control, 54, 11, 2642-2648 (2009) · Zbl 1367.93413
[2] Bai, Y. L.; James, D. B.; Wang, X. G.; Cui, N. G., Attitude tracking with an adaptive sliding mode response to reaction wheel failure, Eur. J. Control, 42, 67-76 (2018) · Zbl 1403.93113
[3] Chen, L. M.; Guo, Y. N.; Li, C. J.; Huang, J., Satellite formation-containment flying control with collision avoidance, J. Aerosp. Inf. Syst., 15, 5, 253-270 (2018)
[4] Chen, L. M.; Li, C. J.; Mei, J.; Ma, G. F., Adaptive cooperative formation-containment control for networked Euler-Lagrange systems without using relative velocity information, IET Control Theory Appl., 11, 9, 1450-1458 (2017)
[5] Gao, C. Y.; Duan, G. R., Fault diagnosis and fault tolerant control for nonlinear satellite attitude control systems, Aerosp. Sci. Technol., 33, 9-15 (2014)
[6] Hamayun, M. T.; Edwards, C.; Alw, H., A fault tolerant control allocation scheme with output integral sliding modes, Automatica, 49, 6, 1830-1837 (2013) · Zbl 1360.93204
[7] Jiang, J.; Yu, X., Fault-tolerant control systems: a comparative study between active and passive approaches, Annu. Rev. Control, 36, 1, 60-72 (2012)
[8] Joshi, S. M.; Patre, P., Direct model reference adaptive control with actuator failures and sensor bias, J. Guid. Control Dyn., 37, 1, 312-317 (2014)
[9] Karimi, H. R.; Duffie, N. A.; Dashkovskiy, S., Local capacity \(h_∞\) control for production networks of autonomous work systems with time-varying delays, IEEE Trans. Automat. Sci. Eng., 7, 4, 849-857 (2010)
[10] Karimi, H. R.; Gao, H., Mixed \(h_2/h_∞\) output-feedback control of second-order neutral systems with time-varying state and input delays, ISA Trans., 47, 3, 311-324 (2008)
[11] Karimi, H. R.; Lohmann, B.; Maralani, P. J.; Moshiri, B., A computational method for solving optimal control and parameter estimation of linear systems using haar wavelets, International Journal of Computer Mathematics, 81, 9, 1121-1132 (2004) · Zbl 1068.65088
[12] Karimi, H. R.; Maralani, P. J.; Lohmann, B.; Moshiri, B., \(h_∞\) control of parameter-dependent state-delayed systems using polynomial parameter-dependent quadratic functions, Int. J. Control, 78, 4, 254-263 (2005) · Zbl 1083.93012
[13] Li, S.; Du, H. B.; Shi, P., Distributed attitude control for multiple spacecraft with communication delays, IEEE Trans. Aerosp. Electr. Syst., 50, 3, 1765-1773 (2014)
[14] X.H. Li, C.K. Ahn, D.K. Lu, S.H. Guo, Robust simultaneous fault estimation and non-fragile output feedback fault-tolerant control for Markovian jump systems, IEEE Trans. Syst. Man Cybern.: Syst., Published Online.; X.H. Li, C.K. Ahn, D.K. Lu, S.H. Guo, Robust simultaneous fault estimation and non-fragile output feedback fault-tolerant control for Markovian jump systems, IEEE Trans. Syst. Man Cybern.: Syst., Published Online.
[15] Liu, M.; Zhang, L. X.; Shi, P.; Zhao, Y. X., Sliding mode control of continuous – time Markovian jump systems with digital data transmission, Automatica, 80, 200-209 (2017) · Zbl 1370.93074
[16] Lunze, J.; Richter, J. H., Reconfigurable fault-tolerant control: a tutorial introduction, Eur. J. Control, 5, 359-386 (2008) · Zbl 1293.93248
[17] Meslemn, N.; Prieur, C., Event-based controller synthesis by bounding methods, Eur. J. Control, 26, 12-21 (2015) · Zbl 1360.93432
[18] Niu, Y. G.; W. C. Ho, D., Design of sliding mode control subject to packet losses, IEEE Trans. Automat. Control, 55, 1, 2623-2629 (2010) · Zbl 1368.93087
[19] Niu, Y. G.; W. C. Ho, D.; Wang, X. Y., Robust control for nonlinear stochastic systems: a sliding-mode approach, IEEE Trans. Automat. Control, 53, 7, 1672-1695 (2008) · Zbl 1367.93475
[20] Ren, W., Distributed cooperative attitude synchronization and tracking for multiple rigid bodies, IEEE Trans. Control Syst. Technol., 18, 2, 383-392 (2010)
[21] Sakthivel, R.; Ahn, C. K.; Joby, M. Y., Fault-tolerant resilient control for fuzzy frac-tional order systems, IEEE Trans. Syst. Man Cybern.: Syst. (2018), Published Online
[22] Seyboth, G. S.; Dimarogonas, D. V.; Johansson, K. H., Event-based broadcasting for multi-agent average consensus, Automatica, 49, 1, 245-252 (2013) · Zbl 1257.93066
[23] Shen, Q.; Wang, D.; Zhu, S. Q.; Poh, E. K., Robust control allocation for spacecraft attitude tracking under actuator faults, IEEE Trans. Control Syst. Technol., 25, 3, 1068-1076 (2017)
[24] Shi, P.; Shen, Q. K., Cooperative control of multi-agent systems with unknown state-dependent controlling effects, IEEE Trans. Automat. Sci. Eng., 12, 3, 827-835 (2015)
[25] Shi, P.; Wang, H. J.; Lim, C. C., Network-based event-triggered control for singular systems with quantizations, IEEE Trans. Ind. Electr., 63, 2, 1230-1238 (2016)
[26] Su, X. J.; Liu, X. X.; Shi, P.; Song, Y. D., Sliding mode control of hybrid switched systems via an event-triggered mechanism, Automatica, 90, 294-303 (2018) · Zbl 1387.93055
[27] Su, X. J.; Liu, X. X.; Song, Y. D., Fault-tolerant control of multiarea power systems via a sliding-mode observer technique, IEEE/ASME Trans. Mechatron., 23, 1, 38-47 (2018)
[28] Tong, M. S.; Pan, Y. L.; Li, Z.; Lin, W. Y., Valid data based normalized cross-correlation (VDNCC) for topography identification, Neurocomputing, 308, 184-193 (2018)
[29] Wang, Y. Y.; Xia, Y. Q.; Ahn, C. K.; Zhu, Y. Z., Exponential stabilization of Takagi-Sugeno fuzzy systems with aperiodic sampling: an aperiodic adaptive event-triggered method, IEEE Trans. Syst. Man Cybern. Syst. (2018), Published Online
[30] Wei, X. J.; Wu, Z. J.; Karimi, H. R., Disturbance observer-based disturbance attenuation control for a class of stochastic systems, Automatica, 63, 21-25 (2016) · Zbl 1329.93129
[31] Wu, L. G.; Gao, Y. B.; Liu, J. X.; Li, H. Y., Event-triggered sliding mode control of stochastic systems via output feedback, Automatica, 182, 79-92 (2017) · Zbl 1376.93030
[32] Xiao, B.; Hu, Q. L.; Zhang, Y. M., Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation, IEEE Trans. Control Syst. Technol., 20, 6, 1605-1613 (2012)
[33] Xiao, B.; Hu, Q. L.; Zhang, Y. M., Finite-time attitude tracking of spacecraft with fault-tolerant capability, IEEE Trans. Control Syst. Technol., 23, 4, 1338-1351 (2015)
[34] Yang, R. N.; Zheng, W. X., \(h_∞\) filtering for discrete-time 2-d switched systems: an extended average dwell time approach, Automatica, 98, 302-313 (2018) · Zbl 1406.93352
[35] Yuan, J. S., Closed-loop manipulator control using quaternion feedback, IEEE Trans. Automat. Control, 4, 4, 434-440 (1988)
[36] Zhang, H.; Huang, X.; Wang, J.; Karimi, H. R., Robust energy-to-peak sideslip angle estimation with applications to ground vehicles, Mechatronics, 30, 338-347 (2015)
[37] Zhang, H.; Meng, W. C.; Qi, J. J.; Wang, X. Y.; Zheng, W. X., Distributed load sharing under false data injection attack in inverter-based microgrid, IEEE Trans. Ind. Electr., 66, 2, 1543-1551 (2019)
[38] Zhang, H.; Qi, Y. F.; Wu, J. F.; Fu, L. K.; He, L. D., Dos attack energy management against remote state estimation, IEEE Trans. Control Netw. Syst., 5, 1, 383-394 (2018) · Zbl 1507.93242
[39] Zhang, H.; Qi, Y. F.; Zhou, H.; Zhang, J.; Sun, J., Testing and defending methods against dos attack in state estimation, Asian J. Control, 19, 4, 1295-1305 (2017) · Zbl 1370.93264
[40] Zhang, H.; Zheng, W. X., Denial-of-service power dispatch against linear quadratic control via a fading channel, IEEE Trans. Automat. Control, 63, 9, 3032-3039 (2018) · Zbl 1423.90164
[41] Zhao, L.; Jia, Y. M.; Yu, J. P., Adaptive finite-time bipartite consensus for second-order multi-agent systems with antagonistic interactions, Syst. Control Lett., 102, 22-31 (2017) · Zbl 1377.93024
[42] Zhao, L.; Yu, J. P.; Lin, C., Adaptive neural consensus tracking for nonlinear multi-agent systems using finite-time command filtered backstepping, IEEE Trans. Syst. Man Cybern.: Syst. (2018)
[43] Zhao, L.; Yu, J. P.; Yu, H. S., Adaptive finite-time attitude tracking control for spacecraft with disturbances, IEEE Trans. Aerosp. Electr. Syst., 54, 3, 1297-1305 (2018)
[44] Zhong, Z. X.; Zhu, Y. Z.; Lam, H. K., Asynchronous piecewise output-feedback control for large-scale fuzzy systems via distributed event-triggering schemes, IEEE Trans. Fuzzy Syst., 26, 3, 1688-1704 (2018)
[45] Zhou, A. M.; Ruiter, A. H.; Kumar, K. D., Distributed finite-time velocity-free attitude coordination control for spacecraft formations, Automatica, 67, 46-53 (2016) · Zbl 1335.93017
[46] Zhu, W.; Jiang, Z.; Feng, G., Event-based consensus of multi-agent systems with general linear models, Automatica, 50, 2, 552-558 (2014) · Zbl 1364.93489
[47] Zhu, Y. Z.; Zhong, Z. X.; Basin, M. V.; Zhou, D. H., A descriptor system approach to stability and stabilization of discrete-time switched PWA systems, IEEE Trans. on Automat. Control, 63, 10, 3456-3463 (2018) · Zbl 1423.93335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.