×

Suitable diffusion for constructing non-oscillatory entropy stable schemes. (English) Zbl 1415.65211

Summary: In this work, amount of suitable diffusion in entropy stable fluxes is explicitly characterized to construct non-oscillatory schemes in total variation diminishing (TVD) sense. Further, high resolution entropy stable TVD fluxes are constructed and a generic TVD-entropy stable region is given for the flux limiter functions. The non-oscillatory TVD property of proposed fluxes does not depend on the choice of entropy functions and different choices for diffusion matrices are proposed for these fluxes. These fluxes are extendable to the system of higher dimension and resulting entropy stable schemes are used to numerically compute the solution for Burgers and shallow water equations in 1D and 2D case. It is also shown numerically that, the use of proposed diffusion matrices in TECNO schemes can significantly suppress the oscillations exhibited by them while applied with other diffusion matrices. Numerical results show that the resulting schemes capture steady shock exactly and produce non-oscillatory solution profile with high resolution.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI

References:

[1] Biswas, B.; Dubey, R. K., Low dissipative entropy stable schemes using third order WENO and TVD reconstructions, Adv. Comput. Math. (2017)
[2] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 1252-1286 (2013) · Zbl 1373.76121
[3] Chen, R.; Mao, D.-k., Entropy-TVD scheme for nonlinear scalar conservation laws, J. Sci. Comput., 47, 150-169 (2011) · Zbl 1217.65170
[4] Chen, R.; Zou, M.; Xiao, L., Entropy-TVD scheme for the shallow water equations in one dimension, J. Sci. Comput., 71, 822-838 (2017) · Zbl 06849493
[5] Fennema, R. J.; Chaudhry, M. H., Explicit methods for 2-d transient free surface flows, J. Hydraul. Eng., 116, 1013-1034 (1990)
[6] Fjordholm, U. S.; Käppeli, R.; Mishra, S.; Tadmor, E., Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Found. Comput. Math., 17, 763-827 (2017) · Zbl 1371.65080
[7] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573 (2012) · Zbl 1252.65150
[8] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85 (1998) · Zbl 0897.65058
[9] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393 (1983) · Zbl 0565.65050
[10] Harten, A.; Hyman, J. M., Self adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys., 50, 235-269 (1983) · Zbl 0565.65049
[11] Harten, A.; Lax, P. D., On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal., 21, 1-23 (1984) · Zbl 0547.65062
[12] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions ii: entropy production at shocks, J. Comput. Phys., 228, 5410-5436 (2009) · Zbl 1280.76015
[13] Kemm, F., A note on the carbuncle phenomenon in shallow water simulations, ZAMM J. Appl. Math. Mech., 94, 516-521 (2014)
[14] Kumar, R.; Kadalbajoo, M., Efficient high-resolution relaxation schemes for hyperbolic systems of conservation laws, Int. J. Numer. Methods Fluids, 55, 483-507 (2007) · Zbl 1129.65055
[15] Laney, C. B., Computational Gasdynamics (1998), Cambridge University Press · Zbl 0947.76001
[16] LeFloch, P. G.; Mercier, J. M.; Rohde, C., Fully discrete, entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal., 40, 1968-1992 (2002) · Zbl 1033.65073
[17] Liu, Y.; Feng, J.; Ren, J., High resolution, entropy-consistent scheme using flux limiter for hyperbolic systems of conservation laws, J. Sci. Comput., 64, 914-937 (2015) · Zbl 1434.76079
[18] Ranocha, H., Comparison of some entropy conservative numerical fluxes for the Euler equations (2017), arXiv preprint
[19] Ricchiuto, M.; Bollermann, A., Stabilized residual distribution for shallow water simulations, J. Comput. Phys., 228, 1071-1115 (2009) · Zbl 1330.76097
[20] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[21] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[22] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011 (1984) · Zbl 0565.65048
[23] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. i, Math. Comput., 49, 91-103 (1987) · Zbl 0641.65068
[24] Tadmor, E., Convenient total variation diminishing conditions for nonlinear difference schemes, SIAM J. Numer. Anal., 25, 1002-1014 (1988) · Zbl 0662.65082
[25] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[26] Toro, E.; Billett, S. J., Centred TVD schemes for hyperbolic conservation laws, IMA J. Numer. Anal., 20, 47-79 (2000) · Zbl 0943.65100
[27] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407
[28] Zhang, X.; Shu, C.-W., A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws, SIAM J. Numer. Anal., 48, 772-795 (2010) · Zbl 1226.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.