×

High resolution, entropy-consistent scheme using flux limiter for hyperbolic systems of conservation laws. (English) Zbl 1434.76079

Summary: Existing entropy-consistent Euler flux avoids spurious oscillations and exactly preserves the stationary contact discontinuity but still leaves much room for further improvement in resolution and other applications. In this spirit, we propose a new high resolution entropy-consistent scheme to track discontinuities in hyperbolic systems of conservation laws. The new high resolution scheme, termed ECL/EC2L scheme, is based on two main ingredients: (1) the entropy-consistent flux, and (2) suitable flux limiter. And the same as entropy-consistent flux function, we obtain a high resolution entropy-consistent flux function (ECL-M-M/EC2L-M-M) precisely satisfies the discrete second law of thermodynamics. Several numerical simulations of the ECL/EC2L scheme have been tested on one-dimensional test cases. For Burgers equations, the ECL-M-M scheme exactly model rarefaction with a stationary shock and compression wave, and the numerical results are comparable to second-order entropy consistent scheme. The second kind of case is the Euler equations with different initial value problems. The numerical results such as height, density, velocity and pressure are analyzed and then compared with the second order entropy-consistent scheme. The third kind of case is the shallow water equations with different kinds of dam break. Those excellent numerical results show the desired resolution and robustness of our ECL-M-M/EC2L-M-M scheme. Moreover, the ECL-M-M/EC2L-M-M flux is completely shock stable which will use to avoid multi-dimensional shock instability, particularly the carbuncle phenomenon.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics

Software:

HE-E1GODF
Full Text: DOI

References:

[1] Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000) · Zbl 0940.35002 · doi:10.1007/978-3-662-22019-1
[2] Ismail, F., Roe, P.L.: Affordable, entropy consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228, 5410-5436 (2009) · Zbl 1280.76015 · doi:10.1016/j.jcp.2009.04.021
[3] Ismial, F.: Toward a reliable prediction of shocks in hypersonic flow: resolving carbuncles with entropy and vorticity control. Ph.D. Thesis, the University of Michigan (2006) · Zbl 0674.65061
[4] Kitamura, K., Roe, P.L., Ismail, F.: Evaluation of Euler fluxes for hypersonic flow computations. AIAA J. 47, 44-53 (2009) · doi:10.2514/1.33735
[5] Mohammed, A.N., Ismail, F.: Study of an entropy-consistent Navier-Stokes flux. Int. J. Comput. Fluid Dyn. 27(1), 1-14 (2013) · Zbl 07508619 · doi:10.1080/10618562.2012.752573
[6] Harten, A., Engquist, B., Osher, S., Chakravarty, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 131, 3-47 (1997) · Zbl 0866.65058 · doi:10.1006/jcph.1996.5632
[7] Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory schemes II. J. Comput. Phys. 83, 32-78 (1989) · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[8] Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws. Seminar für Angewandte Mathematik, Eidgenössische Technische Hochschule CH-8092 Zürich Switzerland (2011) · Zbl 1252.65150
[9] LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambrige (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[10] Gottlieb, S., Shu, C.W., Tadmor, E.: High order time discretizations with strong stability properties. SIAM Rev. 43, 89-112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[11] Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Act. Numer. 12, 451-512 (2003) · Zbl 1046.65078
[12] Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws I. Math. Comput. 49, 91-103 (1987) · Zbl 0641.65068 · doi:10.1090/S0025-5718-1987-0890255-3
[13] Fjordholm, U.S., Mishra, S., Tadmor, E.: Energy preserving and energy stable schemes for the shallow water equations. “Foundations of Computational Mathematics”. In: Cucker, F., Pinkus, A., Todd, M. (eds.) Proceedings of the FoCM Held in Hong Kong 2008. London Math. Soc. Lecture Notes Ser., vol. 363, pp. 93-139 (2009) · Zbl 1381.76236
[14] Lax, P. D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In: SIAM Regional Conference Series in Applied Mathematics (1972)
[15] Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357-393 (1983) · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[16] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1997) · Zbl 0888.76001 · doi:10.1007/978-3-662-03490-3
[17] Roe, P. L.: Numerical algorithms for the linear wave equation. Royal Aircraft Establishment Technical Report 81047 (1981) · Zbl 1280.76015
[18] Van Leer, B.: Towards the ultimate conservative difference scheme, II: monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361-370 (1974) · Zbl 0276.65055 · doi:10.1016/0021-9991(74)90019-9
[19] Chakravarthy, S., Osher, S.: High resolution applications of the Osher upwind scheme for the Euler equations. In: AIAA Paper Presented at 6th CFD Conference (1983) · Zbl 0526.76074
[20] Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995-1011 (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[21] Yee, H.C.: Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comput. Phys. 68, 151-179 (1987) · Zbl 0621.76026 · doi:10.1016/0021-9991(87)90049-0
[22] Fjordholm, U. S.: Structure preserving finite volume methods for the shallow water equations. Master thesis, the University of Oslo (2009) · Zbl 0621.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.