×

A self-adaptive projection method with an inertial technique for split feasibility problems in Banach spaces with applications to image restoration problems. (English) Zbl 1415.47010

Summary: In this work, we study the split feasibility problem (SFP) in the framework of \(p\)-uniformly convex and uniformly smooth Banach spaces. We propose an iterative scheme with inertial terms for seeking the solution of SFP and then prove a strong convergence theorem for the sequences generated by our iterative scheme under implemented conditions on the step size which do not require the computation of the norm of the bounded linear operator. We finally provide some numerical examples which involve image restoration problems and demonstrate the efficiency of the proposed algorithm. The obtained result of this paper complements many recent results in this direction and seems to be the first one to investigate the SFP outside Hilbert spaces involving the inertial technique.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H06 Nonlinear accretive operators, dissipative operators, etc.
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47J05 Equations involving nonlinear operators (general)
Full Text: DOI

References:

[1] Alber, Y.I.: Metric and generalized projection operator in Banach spaces: properties and applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. vol 178 of Lecture Notes in Pure and Applied Mathematics, pp. 15-50. Dekker, New York (1996) · Zbl 0883.47083
[2] Alber, Y., Butnariu, D.: Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces. J. Optim. Theory Appl 92(1), 33-61 (1997) · Zbl 0886.90179 · doi:10.1023/A:1022631928592
[3] Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3-11 (2001) · Zbl 0991.65056 · doi:10.1023/A:1011253113155
[4] Alsulami, S.M., Takahashi, W.: Iterative methods for the split feasibility problem in Banach spaces. J. Convex Anal. 16, 585-596 (2015) · Zbl 1315.47060
[5] Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24, 232-256 (2014) · Zbl 1295.90044 · doi:10.1137/130910294
[6] Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472-487 (2015) · Zbl 1338.65145
[7] Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29-49 (2016) · Zbl 1337.90082
[8] Bot, R.I., Csetnek, E.R.: An inertial forward – backward – forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algebra 71, 519-540 (2016) · Zbl 1338.47076 · doi:10.1007/s11075-015-0007-5
[9] Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459-470 (1977) · Zbl 0383.47035
[10] Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 18, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[11] Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301-323 (2012) · Zbl 1239.65041 · doi:10.1007/s11075-011-9490-5
[12] Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321-353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676
[13] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic, Dordrecht (1990) · Zbl 0712.47043 · doi:10.1007/978-94-009-2121-4
[14] Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239-2267 (2015) · Zbl 1328.65134 · doi:10.1137/15100463X
[15] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in product space. Numer. Algorithm 8, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[16] Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim.https://doi.org/10.3934/jimo.2016078 · Zbl 1362.65061 · doi:10.3934/jimo.2016078
[17] Dong, Q., Jiang, D., Cholamjiak, P., Shehu, Y.: A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions. J. Fixed Point Theory Appl. 19, 3097-3118 (2017) · Zbl 1482.47118 · doi:10.1007/s11784-017-0472-7
[18] Dong, Q.L., Yuan, H.B.: Accelerated Mann and CQ algorithms for finding a fixed point of nonexpansive mapping. Fixed Point Theory Appl. 2015, 125 (2015) · Zbl 1346.47040
[19] Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, T.M.: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12, 87-102 (2018) · Zbl 1462.65058 · doi:10.1007/s11590-016-1102-9
[20] Dang, Y., Gao, Y.: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 27, 015007 (2011) · Zbl 1211.65065 · doi:10.1088/0266-5611/27/1/015007
[21] Daubachies, L., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with sparsity constraint. Commun. Pure Appl. Math. 57, 1413-1457 (2004) · Zbl 1077.65055 · doi:10.1002/cpa.20042
[22] Dunford, N., Schwartz, J.T.: Linear Operators I. Wiley, New York (1958) · Zbl 0084.10402
[23] Estatico, C., Gratton, S., Lenti, F., Titley-Peloquin, D.: A conjugate gradient like method for p-norm minimization in functional spaces. Numer. Math. https://doi.org/10.1007/s00211-017-0893-7 · Zbl 1379.65029 · doi:10.1007/s00211-017-0893-7
[24] Gibali, A., Liu, L.-W., Tang, Y.-C.: Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 12, 817-830 (2018) · Zbl 1423.90179 · doi:10.1007/s11590-017-1148-3
[25] Gibali, A.: A new split inverse problem and application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2, 243-258 (2017) · Zbl 1375.49048
[26] Gibali, A., Küfer, K.-H., Süss, P.: Successive linear programing approach for solving the nonlinear split feasibility problem. J. Nonlinear Convex Anal. 15, 345-353 (2014) · Zbl 1291.90171
[27] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984) · Zbl 0537.46001
[28] Hendrickx, J.M., Olshevsky, A.: Matrix \[PP\]-norms are NP-hard to approximate if \[P\ne 1,2,\infty P\]≠1,2,∞. SIAM J. Matrix Anal. Appl. 16, 2802-2812 (2010) · Zbl 1216.68117 · doi:10.1137/09076773X
[29] Kammerer, W.J., Nashed, M.Z.: A generalization of a matrix iterative method of G. Cimmino to best approximate solutions of linear integral equations for the first kind. Rendiconti della Accademia Nazionale dei Lincei, Serie 8(51), 20-25 (1971) · Zbl 0245.65059
[30] Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505-523 (2005) · Zbl 1105.47059
[31] Lenti, F., Nunziata, F., Estatico, C., Migliaccio, M.: Analysis of reconstructions obtained solving \[\ell_p\] ℓp-penalized minimization problems. IEEE Trans. Geosci. Remote Sens. 53, 48764886 (2015) · doi:10.1109/TGRS.2015.2411854
[32] Li, Z., Han, D., Zhang, W.: A self-adaptive projection-type method for nonlinear multiple-sets split feasibility problem. Inverse Probl. Sci. Eng. 21, 155-170 (2013) · Zbl 1272.65053 · doi:10.1080/17415977.2012.677445
[33] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979) · Zbl 0403.46022 · doi:10.1007/978-3-662-35347-9
[34] López, G., Martin-Marquez, V., Wang, F.H., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. (2012). https://doi.org/10.1088/0266-5611/28/8/085004 · Zbl 1262.90193 · doi:10.1088/0266-5611/28/8/085004
[35] Lorenz, D.A., Pock, T.: An inertial forward – backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311-325 (2015) · Zbl 1327.47063 · doi:10.1007/s10851-014-0523-2
[36] Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223-236 (2008) · Zbl 1156.65054 · doi:10.1016/j.cam.2007.07.021
[37] Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67-79 (2007) · Zbl 1129.47054 · doi:10.1007/s11228-006-0027-3
[38] Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367-371 (2007) · Zbl 1171.90009
[39] Mikhlin, S.G., Smolitskiy, K.L.: Approximate Methods for Solution of Differential and Integral Equations. Elsevier, New York (1967) · Zbl 0159.20702
[40] Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275-283 (2011) · Zbl 1231.90358 · doi:10.1007/s10957-011-9814-6
[41] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8, 2099-2110 (2014) · Zbl 1317.49019 · doi:10.1007/s11590-013-0708-4
[42] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447-454 (2003) · Zbl 1027.65077 · doi:10.1016/S0377-0427(02)00906-8
[43] Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372-379 (2003) · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[44] Nesterov, Y.: A method for solving the convex programming problem with convergence rate \[O(1/k^2)O\](1/k2). Dokl. Akad. Nauk SSSR 269, 543-547 (1983)
[45] Penfold, S., Zalas, R., Casiraghi, M., Brooke, M., Censor, Y., Schulte, R.: Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy. Phys. Med. Biol. 62, 3599-3618 (2017) · doi:10.1088/1361-6560/aa602b
[46] Phelps, R.P.: Convex Functions, Monotone Operators, and Differentiability, 2nd Edn. Lecture Notes in Mathematics, vol. 1364. Springer, Berlin (1993) · Zbl 0921.46039
[47] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. U. S. S. R. Comput. Math. Math. Phys. 4, 1-17 (1964) · Zbl 0147.35301 · doi:10.1016/0041-5553(64)90137-5
[48] Reich, S.: Review of “Geometry of Banach spaces, duality mappings and nonlinear problems” by Ioana Cioranescu. Bull. Am. Math. Soc. 26, 367-370 (1992) · doi:10.1090/S0273-0979-1992-00287-2
[49] Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 6, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[50] Shehu, Y.: Iterative methods for split feasibility problems in certain Banach spaces. J. Nonlinear Convex Anal. 16, 2315-2364 (2015) · Zbl 1334.49037
[51] Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithm 72, 835-864 (2016) · Zbl 1346.49051 · doi:10.1007/s11075-015-0069-4
[52] Shehu, Y., Iyiola, O.S.: Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method. J. Fixed Point Theory Appl. 19, 2483-2510 (2017) · Zbl 1493.47100 · doi:10.1007/s11784-017-0435-z
[53] Schöpfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Prob. 24, 055008 (2008) · Zbl 1153.46308 · doi:10.1088/0266-5611/24/5/055008
[54] Schöpfer, F.: Iterative regularization method for the solution of the split feasibility problem in Banach spaces. PhD thesis, Saarbrücken (2007)
[55] Schuster, T.; Kaltenbacher, B.; Hofmann, B.; Kazimierski, K.; Gruyter, W. (ed.), Regularization methods in Banach spaces, No. 10 (2012), Berlin · Zbl 1259.65087
[56] Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Applications. Yokohama Publishers Inc., Yokohama (2000). (in Japanese) · Zbl 0997.47002
[57] Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000) · Zbl 0997.47002
[58] Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: A gradient projection method for solving split equality and split feasibility problems in Hilbert spaces. Optimization 64, 2321-2341 (2015) · Zbl 1329.65129 · doi:10.1080/02331934.2014.967237
[59] Wang, F.: A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces. Numer. Funct. Anal. Optim. 35, 99-110 (2014) · Zbl 1480.47102 · doi:10.1080/01630563.2013.809360
[60] Wang, F.: On the convergence of CQ algorithm with variable steps for the split equality problem. Numer. Algorithm 74, 927-935 (2017) · Zbl 1382.47035 · doi:10.1007/s11075-016-0177-9
[61] Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991) · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
[62] Xu, H.K.: A variable Krasonosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021-2034 (2006) · Zbl 1126.47057 · doi:10.1088/0266-5611/22/6/007
[63] Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010) · Zbl 1213.65085 · doi:10.1088/0266-5611/26/10/105018
[64] Yang, Q.: On variable-set relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 302, 166-179 (2005) · Zbl 1056.49018 · doi:10.1016/j.jmaa.2004.07.048
[65] Yoshida, K.: Lectures on Differential and Integral Equations. Interscience, London (1960) · Zbl 0090.08401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.