×

Concentration-compactness for singular nonlocal Schrödinger equations with oscillatory nonlinearities. (English) Zbl 1415.35135

Summary: The paper is dedicated to the theory of concentration-compactness principles for inhomogeneous fractional Sobolev spaces. This subject for the local case has been studied since the publication of the celebrated works due to P.-L. Lions, which laid the broad foundations of the method and outlined a wide scope of its applications. Our study is based on the analysis of the profile decomposition for the weak convergence following the approach of dislocation spaces, introduced by K. Tintarev and K.-H. Fieseler. As an application, we obtain existence of nontrivial and nonnegative solutions and ground states for fractional Schrödinger equations for a wide class of possible singular potentials, not necessarily bounded away from zero. We consider possible oscillatory nonlinearities for both cases, subcritical and critical which are superlinear at the origin, without the classical Ambrosetti and Rabinowitz growth condition. In some of our results we prove existence of solutions by means of compactness of Palais-Smale sequences of the associated functional at the mountain pass level. To this end we study and provide the behavior of the weak profile decomposition convergence under the related functionals. Moreover, we use a Pohozaev type identity in our argument to compare the minimax levels of the energy functional with the ones of the associated limit problem. Motivated by this fact, in our work we also prove that this kind of identities hold for a larger class of potentials and nonlinearities for the fractional framework.

MSC:

35J75 Singular elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35R11 Fractional partial differential equations

References:

[1] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005), 117-144. · Zbl 1064.35175 · doi:10.4171/JEMS/24
[2] D. Applebaum, Lévy processes – from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), 1336-1347. · Zbl 1053.60046
[3] W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere \(S^n\), Proc. Natl. Acad. Sci. USA 89 (1992), 4816-4819. · Zbl 0766.46012
[4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260. · Zbl 1143.26002 · doi:10.1080/03605300600987306
[5] X. Chang, Ground states of some fractional Schrödinger equations on \(\Bbb{R}^N\), Proc. Edinb. Math. Soc. (2) 58 (2015), 305-321. · Zbl 1327.35396
[6] X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity 26 (2013), 479-494. · Zbl 1276.35080 · doi:10.1088/0951-7715/26/2/479
[7] D.G. Costa, J.M. do Ó and K. Tintarev, Schrödinger equations with critical nonlinearity, singular potential and a ground state, J. Differential Equations 249 (2010), 240-252. · Zbl 1192.35061
[8] M. Cwikel and K. Tintarev, On interpolation of cocompact imbeddings, Rev. Mat. Complut. 26 (2013), 33-55. · Zbl 1308.46029 · doi:10.1007/s13163-011-0087-2
[9] R. de Marchi, Schrödinger equations with asymptotically periodic terms, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), 745-757. · Zbl 1331.35136 · doi:10.1017/S0308210515000104
[10] M. de Souza, J.M. do Ó and T. da Silva, On a class quasilinear Schrödinger equations in \(\Bbb{R}^n\), Appl. Anal. 95 (2016), 323-340. · Zbl 1337.35062
[11] Y. Deng, L. Jin and S. Peng, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, J. Differential Equations 253 (2012), 1376-1398. · Zbl 1248.35058
[12] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[13] Y. Ding and C. Lee, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations 222 (2006), 137-163. · Zbl 1090.35077
[14] S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, http://arxiv.org/abs/1506.07317v1. · Zbl 1361.35191
[15] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania) 68 (2013), 201-216. · Zbl 1287.35023
[16] J.M. do Ó and D. Ferraz, Concentration-compactness principle for nonlocal scalar field equations with critical growth, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/ j.jmaa.2016.12.053. · Zbl 1366.35232
[17] M.M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations 39 (2014), 354-397. · Zbl 1286.35250 · doi:10.1080/03605302.2013.825918
[18] M.M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Commun. Contemp. Math. 18 (2016), 1550012, 25. · Zbl 1334.35385 · doi:10.1142/S0219199715500121
[19] V. Felli and A. Pistoia, Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth, Comm. Partial Differential Equations 31 (2006), 21-56. · Zbl 1225.35087 · doi:10.1080/03605300500358145
[20] V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations 31 (2006), 469-495. · Zbl 1206.35104 · doi:10.1080/03605300500394439
[21] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237-1262. · Zbl 1290.35308
[22] B. Feng, Ground states for the fractional Schrödinger equation, Electron. J. Differential Equations (2013), No. 127, 11. · Zbl 1291.35342
[23] P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var. 3 (1998), 213-233. · Zbl 0907.46027
[24] T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS) 16 (2014), 1111-1171. · Zbl 1300.53041
[25] R. Lehrer, L.A. Maia and M. Squassina, Asymptotically linear fractional Schrödinger equations, Complex Var. Elliptic Equ. 60 (2015), 529-558. · Zbl 1319.35289
[26] S. Li, Y. Ding and Y. Chen, Concentrating standing waves for the fractional Schrödinger equation with critical nonlinearities, Bound. Value Probl. (2015), 2015:240. · Zbl 1333.35223
[27] H.F. Lins and E.A.B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal. 71 (2009), 2890-2905. · Zbl 1167.35338 · doi:10.1016/j.na.2009.01.171
[28] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145. · Zbl 0541.49009
[29] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283. · Zbl 0704.49004
[30] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Rev. Mat. Iberoamericana 1 (1985), 145-201. · Zbl 0704.49005 · doi:10.4171/RMI/6
[31] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case II, Rev. Mat. Iberoamericana 1 (1985), 45-121. · Zbl 0704.49006 · doi:10.4171/RMI/12
[32] O. H. Miyagaki, On a class of semilinear elliptic problems in \({\mathbb R}^N\) with critical growth, Nonlinear Anal. 29 (1997), 773-781. · Zbl 0877.35043
[33] A. Nekvinda, Characterization of traces of the weighted Sobolev space \(W^{1,p}(\Omega,d^\epsilon_M)\) on \(M\), Czechoslovak Math. J. 43 (1993), no. 118, 695-711. · Zbl 0832.46026
[34] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations 50 (2014), 799-829. · Zbl 1296.35064 · doi:10.1007/s00526-013-0656-y
[35] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291. · Zbl 0763.35087
[36] X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), 587-628. · Zbl 1361.35199 · doi:10.1007/s00205-014-0740-2
[37] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in \(\Bbb R^N\), J. Math. Phys. 54 (2013), 031501, 17. · Zbl 1281.81034 · doi:10.1063/1.4793990
[38] X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity 27 (2014), 187-207. · Zbl 1287.35027
[39] X. Shang, J. Zhang and Y. Yang, On fractional Schrödinger equation in \(\Bbb R^N\) with critical growth, J. Math. Phys. 54 (2013), 121502, 20. · Zbl 1290.35251
[40] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67-112. · Zbl 1141.49035 · doi:10.1002/cpa.20153
[41] B. Sirakov, Existence and multiplicity of solutions of semi-linear elliptic equations in \(\mathbb R^N\), Calc. Var. Partial Differential Equations 11 (2000), 119-142. · Zbl 0977.35049 · doi:10.1007/s005260000010
[42] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc. 357 (2005), 2909-2938. · Zbl 1134.35348
[43] S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 319-337. · Zbl 0837.46025
[44] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), 511-517. · Zbl 0535.35025 · doi:10.1007/BF01174186
[45] A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010, 597-632. · Zbl 1218.58010
[46] S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (1996), 241-264. · Zbl 0847.35045
[47] K. Tintarev, Positive solutions of elliptic equations with a critical oscillatory nonlinearity, Discrete Contin. Dyn. Syst. (2007), 974-981. · Zbl 1163.35349
[48] K. Tintarev, Concentration compactness at the mountain pass level in semilinear elliptic problems, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 581-598. · Zbl 1215.35077 · doi:10.1007/s00030-008-7046-8
[49] K. Tintarev and K.-H. Fieseler, Concentration compactness, Functional-Analytic Grounds and Applications, Imperial College Press, London, 2007. · Zbl 1118.49001
[50] D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal. 168 (1999), 121-144. · Zbl 0981.26016 · doi:10.1006/jfan.1999.3462
[51] H. Zhang, J. Xu and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrödinger equations in \(\Bbb{R}^N\), J. Math. Phys. 56 (2015), 091502, 13. · Zbl 1328.35225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.