×

Existence and multiplicity of solutions for superlinear fractional Schrödinger equations in \(\mathbb{R}^{N}\). (English) Zbl 1328.35225

Authors’ abstract: In this paper, we are concerned with superlinear fractional Schrödinger equation \((-\Delta)^su + V(x)u = f(x, u),\; x \in \mathbb{R}^{N}\), where \(f\) is continuous. When \(V\) and \(f\) are asymptotically periodic in \(x\), we show the existence of ground states. When \(V\) and \(f\) are periodic in \(x\), we obtain infinitely many geometrically distinct solutions. The method used here is based on the method of Nehari manifold and Lusternik-Schnirelmann category theory.{
©2015 American Institute of Physics}

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
Full Text: DOI

References:

[1] Barrios, B.; Colorado, E.; de Pablo, A.; Snchez, U., On some critical problems for the fractional Laplacian operator, J. Differ. Equations, 252, 6133-6162 (2012) · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[2] Berestycki, H.; Lions, P. L., Nonlinear scalar field equations, Arch. Rational Mech. Anal., 82, 313-375 (1983) · Zbl 0556.35046
[3] Bertoin, J., Lévy Processes, 121 (1996) · Zbl 0861.60003
[4] Cabr, X.; Tan, J., Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224, 2052-2093 (2010) · Zbl 1198.35286 · doi:10.1016/j.aim.2010.01.025
[5] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[6] Chang, X. J., Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys., 54, 061504 (2013) · Zbl 1282.81072 · doi:10.1063/1.4809933
[7] Cheng, M., Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53, 043507 (2012) · Zbl 1275.81030 · doi:10.1063/1.3701574
[8] Cont, R.; Tankov, P., Financial Modelling with Jump Processes (2004) · Zbl 1052.91043
[9] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[10] Dipierro, S.; Palatucci, G.; Valdinoci, E., Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania), 68, 201-216 (2013) · Zbl 1287.35023
[11] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. - R. Soc. Edinburgh, Sect. A: Math., 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[12] Jara, M., Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Commun. Pure Appl. Math., 62, 198-214 (2009) · Zbl 1153.82015 · doi:10.1002/cpa.20253
[13] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 056108 (2002) · doi:10.1103/PhysRevE.66.056108
[14] Laskin, N., Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[15] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, 65 (1986) · Zbl 0609.58002
[16] Secchi, S., Ground state solutions for nonlinear fractional Schrödinger equations in \(ℝ^N\), J. Math. Phys., 54, 031501 (2013) · Zbl 1281.81034 · doi:10.1063/1.4793990
[17] Secchi, S., “On fractional Schrödinger equations in \(ℝ^N\) without the Ambrosetti-Rabinowitz condition,” e-print . · Zbl 1362.35290
[18] Servadei, R.; Valdinoci, E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33, 2105-2137 (2013) · Zbl 1303.35121 · doi:10.3934/dcds.2013.33.2105
[19] Shang, X. D.; Zhang, J. H., Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27, 187-207 (2014) · Zbl 1287.35027 · doi:10.1088/0951-7715/27/2/187
[20] Shang, X. D.; Zhang, J. H.; Yang, Y., On fractional Schrödinger equation in \(ℝ^N\) with critical growth, J. Math. Phys., 54, 121502 (2013) · Zbl 1290.35251 · doi:10.1063/1.4835355
[21] Silva, E. A. B.; Vieira, G. F., Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calculus Var. Partial Differ. Equations, 39, 1-33 (2010) · Zbl 1223.35290 · doi:10.1007/s00526-009-0299-1
[22] Struwe, M., Variational Methods (1996) · Zbl 0864.49001
[23] Szulkin, A.; Weth, T.; Gao, D. Y.; Motreanu, D., The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, 597-632 (2010) · Zbl 1218.58010
[24] Szulkin, A.; Weth, T., Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257, 3802-3822 (2009) · Zbl 1178.35352 · doi:10.1016/j.jfa.2009.09.013
[25] Tan, J., The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calculus Var. Partial Differ. Equations, 42, 21-41 (2011) · Zbl 1248.35078 · doi:10.1007/s00526-010-0378-3
[26] Teng, K. M., Multiple solutions for a class of fractional Schrödinger equations in \(ℝ^N\), Nonlinear Anal.: Real World Appl., 21, 76-86 (2015) · Zbl 1302.35415 · doi:10.1016/j.nonrwa.2014.06.008
[27] Weitzner, H.; Zaslavsky, G. M., Some applications of fractional equations, Chaotic transport and complexity in classical and quantum dynamics, Commun. Nonlinear Sci. Numer. Simul., 8, 273-281 (2003) · Zbl 1041.35073 · doi:10.1016/S1007-5704(03)00049-2
[28] Willem, M., Minimax Theorems, 24 (1996) · Zbl 0856.49001
[29] Zhang, H.; Zhang, F. B., Ground states for the nonlinear Kirchhoff type problems, J. Math. Anal. Appl., 423, 1671-1692 (2015) · Zbl 1333.35042 · doi:10.1016/j.jmaa.2014.10.062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.