×

Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. (English) Zbl 1412.65070

Summary: The MHD equation has some applications in physics and engineering. The main aim of the current paper is to propose a new numerical algorithm for solving the MHD equation. At first, the temporal direction has been discretized by the Crank-Nicolson scheme. Also, the unconditional stability and convergence of the time-discrete scheme have been investigated by using the energy method. Then, an improvement of element free Galerkin (EFG), i.e., the interpolating element free Galerkin method has been employed to discrete the spatial direction. Furthermore, an error estimate is presented for the full discrete scheme based on the Crank-Nicolson scheme by using the energy method. We prove that convergence order of the numerical scheme based on the new numerical scheme is \(\mathcal{O}(\tau^2 + \delta^m)\). In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. Numerical examples confirm the efficiency and accuracy of the proposed scheme.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q35 PDEs in connection with fluid mechanics
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65D32 Numerical quadrature and cubature formulas
Full Text: DOI

References:

[1] Abbaszadeh, M.; Dehghan, M., An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate, Numer. Algorithms, 75, 1, 173-211 (2017) · Zbl 1412.65131
[2] Barrett, K. E., Duct flow with a transverse magnetic field at high Hartmann numbers, Int. J. Numer. Methods Eng., 50, 1893-1906 (2001) · Zbl 0998.76045
[3] Bourantas, G. C.; Skouras, E. D.; Loukopoulos, V. C.; Nikiforidis, G. C., An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems, J. Comput. Phys., 228, 8135-8160 (2009) · Zbl 1391.76510
[4] Bozkaya, C.; Tezer-Sezgin, M., Boundary element method solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme, Int. J. Numer. Methods Fluids, 51, 567-584 (2006) · Zbl 1089.76040
[5] Bozkaya, C.; Tezer-Sezgin, M., Fundamental solution for coupled magnetohydrodynamic flow equations, J. Comput. Appl. Math., 203, 125-144 (2007) · Zbl 1172.76383
[6] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer New York Dordrecht Heidelberg London · Zbl 1220.46002
[7] Cai, Z., On the finite volume element method, Numer. Math., 58, 713-735 (1991) · Zbl 0731.65093
[8] Cai, Z.; Mandel, J.; McCormick, S., The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal., 28, 2, 392-402 (1991) · Zbl 0729.65086
[9] Cai, X.; Su, G. H.; Qiu, S., Local radial point interpolation method for the fully developed magnetohydrodynamic flow, Appl. Math. Comput., 217, 4529-4539 (2011) · Zbl 1428.76229
[10] Cai, X.; Su, G. H.; Qiu, S., Upwinding meshfree point collocation method for steady MHD flow with arbitrary orientation of applied magnetic field at high Hartmann numbers, Comput. Fluids, 44, 153-161 (2011) · Zbl 1271.76239
[11] Chatzipantelidis, P., A finite volume method based on the Crouzeix-Raviart element for elliptic PDE’s in two dimensions, Numer. Math., 82, 409-432 (1999) · Zbl 0942.65131
[12] Cheng, Y.; Bai, F.; Peng, M., A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity, Appl. Math. Model., 38, 21, 5187-5197 (2014) · Zbl 1449.74196
[13] Dai, B. D.; Zheng, B.; Liang, Q.; Wang, L., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl. Math. Comput., 219, 10044-10052 (2013) · Zbl 1307.80008
[14] Dehghan, M.; Abbaszadeh, M., Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Eng., 311, 856-888 (2016) · Zbl 1439.76060
[16] Dehghan, M.; Mirzaei, D., Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity, Appl. Numer. Math., 59, 1043-1058 (2009) · Zbl 1159.76034
[17] Dehghan, M.; Mirzaei, D., Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes, Comput. Phys. Commun., 180, 1458-1466 (2009) · Zbl 07872387
[18] Dehghan, M.; Mohammadi, V., The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: the Crank-Nicolson scheme and the method of lines (MOL), Comput. Math. Appl., 70, 2292-2315 (2015) · Zbl 1443.65120
[19] Dehghan, M.; Salehi, R., A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity, Comput. Mech., 52, 1445-1462 (2013) · Zbl 1398.76234
[20] Demendy, Z.; Nagy, T., A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers, Acta Mech., 123, 135-149 (1997) · Zbl 0902.76058
[21] Deng, Y. J.; Liu, C.; Peng, M. J.; Cheng, Y. M., The interpolating complex variable element-free Galerkin method for temperature field problems, Int. J. Appl. Mech., 7, 2, Article 1550017 pp. (2015)
[22] Feng-Xin, S.; Ju-Feng, W.; Yu-Min, C., An improved interpolating element-free Galerkin method for elasticity, Chin. Phys. B, 22, 12, Article 120203 pp. (2013)
[23] Gupta, S. C.; Singh, B., Unsteady MHD flow in a rectangular channel under transverse magnetic field, Indian J. Pure Appl. Math., 3, 6, 1038-1047 (1972)
[24] He, Y., Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations, IMA J. Numer. Anal., 35, 2, 767-801 (2015) · Zbl 1312.76061
[25] Hosseinzadeh, H.; Dehghan, M.; Mirzaei, D., The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers, Appl. Math. Model., 37, 2337-2351 (2013) · Zbl 1349.76417
[26] Hsieh, P. W.; Yang, S. Y., Two new upwind difference schemes for a coupled system of convection-diffusion equations arising from the steady MHD duct flow problems, J. Comput. Phys., 229, 9216-9234 (2010) · Zbl 1427.76273
[27] Ju-Feng, W.; Feng-Xin, S.; Yu-Min, C., An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems, Chin. Phys. B, 21, 9, Article 090204 pp. (2012)
[28] Li, X., A meshless interpolating Galerkin boundary node method for Stokes flows, Eng. Anal. Bound. Elem., 51, 112-122 (2015) · Zbl 1403.76090
[29] Li, D.; Bai, F.; Cheng, Y.; Liew, K. M., A novel complex variable element-free Galerkin method for two-dimensional large deformation problems, Comput. Methods Appl. Mech. Eng., 233, 1-10 (2012) · Zbl 1253.74106
[30] Li, Q.; Chen, S.; Luo, X., Steady heat conduction analyses using an interpolating element-free Galerkin scaled boundary method, Appl. Math. Comput., 300, 103-115 (2017) · Zbl 1411.80004
[31] Li, X.; Dong, H., The element-free Galerkin method for the nonlinear p-Laplacian equation, Comput. Math. Appl., 75, 2549-2560 (2018) · Zbl 1409.65096
[32] Li, X.; Li, S., On the stability of the moving least squares approximation and the element-free Galerkin method, Comput. Math. Appl., 72, 1515-1531 (2016) · Zbl 1361.65090
[33] Li, X.; Li, S., Analysis of the complex moving least squares approximation and the associated element-free Galerkin method, Appl. Math. Model., 47, 45-62 (2017) · Zbl 1446.65176
[34] Li, Y.; Tian, Z. F., An exponential compact difference scheme for solving 2D steady magnetohydrodynamic (MHD) duct flow problems, J. Comput. Phys., 231, 5443-5468 (2012) · Zbl 1431.76096
[35] Li, X.; Wang, Q., Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases, Eng. Anal. Bound. Elem., 73, 21-34 (2016) · Zbl 1403.65206
[36] Li, D.; Zhang, Z.; Liew, K., A numerical framework for two-dimensional large deformation of inhomogeneous swelling of gels using the improved complex variable element-free Galerkin method, Comput. Methods Appl. Mech. Eng., 274, 84-102 (2014) · Zbl 1296.74120
[37] Liu, F. B.; Cheng, Y. M., The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels, Int. J. Appl. Mech., 10, 4, Article 1850047 pp. (2018)
[38] Liu, G.-R.; Gu, Y.-T., An Introduction to Meshfree Methods and Their Programming (2005), Springer Science & Business Media
[39] Loukopoulos, V. C.; Bourantas, G. C.; Skouras, E. D.; Nikiforidis, G. C., Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions, Comput. Mech., 47, 137-159 (2011) · Zbl 1398.76237
[40] Nesliturk, A. I.; Tezer-Sezgin, M., The finite element method for MHD flow at high Hartmann numbers, Comput. Methods Appl. Mech. Eng., 194, 1201-1224 (2005) · Zbl 1091.76036
[41] Ramos, J. I.; Winowich, N. S., Finite difference and finite element methods for MHD channel flows, Int. J. Numer. Methods Fluids, 11, 907-934 (1990) · Zbl 0704.76066
[42] Ravindran, S. S., Linear feedback control and approximation for a system governed by unsteady MHD equations, Comput. Methods Appl. Mech. Eng., 198, 524-541 (2008) · Zbl 1228.76194
[43] Ren, H. P.; Cheng, Y. M., The interpolating element-free Galerkin (IEFG) method for two-dimensional elasticity problems, Int. J. Appl. Mech., 3, 4, 735-758 (2011)
[44] Ren, H.; Cheng, Y., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng. Anal. Bound. Elem., 36, 5, 873-880 (2012) · Zbl 1352.65539
[45] Salah, N. B.; Soulaimani, A.; Habashi, W. G., A finite element method for magnetohydrodynamics, Comput. Methods Appl. Mech. Eng., 190, 5867-5892 (2001) · Zbl 1044.76030
[46] Sedaghatjoo, Z.; Dehghan, M.; Hosseinzadeh, H., A stable boundary elements method for magnetohydrodynamic channel flows at high Hartmann numbers, Numer. Methods Partial Differ. Equ., 34, 575-601 (2018) · Zbl 1388.76192
[47] Sedaghatjoo, Z.; Dehghan, M.; Hosseinzadeh, H., Numerical solution of 2D Navier-Stokes equation discretized via boundary elements method and finite difference approximation, Eng. Anal. Bound. Elem., 96, 64-77 (2018) · Zbl 1403.76102
[48] Shakeri, F.; Dehghan, M., A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations, Appl. Numer. Math., 61, 1-23 (2011) · Zbl 1427.76276
[49] Shercliff, J. A., Steady motion of conducting fluids in pipes under transverse magnetic fields, Proc. Camb. Philos. Soc., 49, 136-144 (1953) · Zbl 0050.19404
[50] Singh, B.; Lal, J., MHD axial flow in a triangular pipe under transverse magnetic field, Indian J. Pure Appl. Math., 18, 101-115 (1978) · Zbl 0383.76094
[51] Singh, B.; Lal, J., Finite element method in MHD channel flow problems, Int. J. Numer. Methods Eng., 18, 1091-1111 (1982) · Zbl 0489.76119
[52] Sun, F. X.; Wang, J. F.; Cheng, Y. M., An improved interpolating element-free Galerkin method for elastoplasticity via nonsingular weight functions, Int. J. Appl. Mech., 8, 8, Article 1650096 pp. (2016)
[53] Takhar, H. S.; Singh, A. K.; Nath, G., Unsteady MHD flow and heat transfer on a rotating disk in an ambient fluid, Int. J. Therm. Sci., 41, 147-155 (2002)
[54] Tatari, M.; Ghasemi, F., The Galerkin boundary node method for magneto-hydrodynamic (MHD) equation, J. Comput. Phys., 258, 634-649 (2014) · Zbl 1349.76270
[55] Tezer Sezgin, M., Magnetohydrodynamic flow in electrodynamically coupled rectangular ducts, Int. J. Numer. Methods Fluids, 8, 705-722 (1988) · Zbl 0668.76150
[56] Tezer-Sezgin, M., Boundary element method solution of MHD flow in a rectangular duct, Int. J. Numer. Methods Fluids, 18, 937-952 (1994) · Zbl 0814.76063
[57] Tezer-Sezgin, M.; Bozkaya, C., Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field, Comput. Mech., 41, 769-775 (2008) · Zbl 1241.76323
[58] Tezer-Sezgin, M.; Bozkaya, C., The boundary element solution of magnetohydrodynamic flow in an infinite region, J. Comput. Appl. Math., 225, 510-521 (2009) · Zbl 1301.76054
[59] Tezer-Sezgin, M.; Han Aydin, S., Solution of magnetohydrodynamic flow problems using the boundary element method, Eng. Anal. Bound. Elem., 30, 411-418 (2006) · Zbl 1187.76703
[60] Tezer-Sezgin, M.; Koksal, S., Finite element method for solving MHD flow in a rectangular duct, Int. J. Numer. Methods Eng., 28, 445-459 (1989) · Zbl 0669.76140
[61] Verardi, S. L.L.; Machado, J. M.; Shiyou, Y., The application of interpolating MLS approximations to the analysis of MHD flows, Finite Elem. Anal. Des., 39, 1173-1187 (2003)
[62] Wang, J. F.; Sun, F. X.; Cheng, Y. M.; Huang, A. X., Error estimates for the interpolating moving least-squares method in n-dimensional space, Appl. Numer. Math., 98, 79-105 (2015) · Zbl 1329.65280
[63] Zhang, L.; Deng, Y.; Liew, K., An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng. Anal. Bound. Elem., 40, 181-188 (2014) · Zbl 1297.65123
[64] Zhang, L.; Deng, Y.; Liew, K.; Cheng, Y., The improved complex variable element-free Galerkin method for two-dimensional Schrodinger equation, Comput. Math. Appl., 68, 10, 1093-1106 (2014) · Zbl 1367.35141
[66] Zhang, G. D.; He, Y., Decoupled schemes for unsteady MHD equations II: finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69, 12, 1390-1406 (2015) · Zbl 1443.65232
[67] Zhang, L.; Huang, D.; Liew, K. M., An element-free IMLS-Ritz method for numerical solution of three-dimensional wave equations, Comput. Methods Appl. Mech. Eng., 297, 116-139 (2015) · Zbl 1425.65122
[68] Zhang, T.; Li, X., A generalized element-free Galerkin method for Stokes problem, Comput. Math. Appl., 75, 3127-3138 (2018) · Zbl 1409.76069
[69] Zhang, L.; Ouyang, J.; Zhang, X., The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers, Comput. Phys. Commun., 184, 1106-1118 (2013) · Zbl 1302.76110
[70] Zhao, N.; Ren, H., The interpolating element-free Galerkin method for 2D transient heat conduction problems, Math. Probl. Eng. (2014) · Zbl 1407.80009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.