×

The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers. (English) Zbl 1302.76110

Summary: The aim of the paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics (MHD) flow problems with either fully insulating walls or partially insulating and partially conducting walls. Toward this, we first extend the influence domain of the shape function for the element free Galerkin (EFG) method to have arbitrary shape. When the influence factor approaches 1, we find that the EFG shape function almost has the Delta property at the node (i.e. the value of the EFG shape function of the node is nearly equal to 1 at the position of this node) as well as the property of slices in the influence domain of the node (i.e. the EFG shape function in the influence domain of the node is nearly constructed by different functions defined in different slices). Therefore, for MHD flow problems at high Hartmann numbers we follow the idea of the variational multiscale finite element method (VMFEM) to combine the EFG method with the variational multiscale (VM) method, namely the variational multiscale element free Galerkin (VMEFG) method is proposed. Subsequently, in order to validate the proposed method, we compare the obtained approximate solutions with the exact solutions for some problems where such exact solutions are known. Finally, several benchmark problems of MHD flows are simulated and the numerical results indicate that the VMEFG method is stable at moderate and high values of Hartmann number. Another important feature of this method is that the stabilization parameter has appeared naturally via the solution of the fine scale problem. Meanwhile, because this proposed method is a type of meshless method, it can avoid the need for meshing, a very demanding task for complicated geometry problems.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Dehghan, M.; Mirzaei, D., Comput. Phys. Comm., 180, 1458 (2009)
[2] Hunt, J. C.R., J. Fluid Mech., 21, 577 (1965) · Zbl 0125.18401
[3] Shercliff, J. A., Proc. Cambridge Philos. Soc., 49, 136 (1953) · Zbl 0050.19404
[4] Singh, B.; Lal, J., Indian J. Technol., 17, 184 (1979) · Zbl 0413.76094
[5] Singh, B.; Lal, J., Int. J. Numer. Methods Eng., 18, 1104 (1982) · Zbl 0489.76119
[6] Nesliturk, A. I.; Tezer-Sezgin, M., Comput. Methods Appl. Mech. Eng., 194, 1201 (2005) · Zbl 1091.76036
[7] Barrett, K. E., Int. J. Numer. Methods Eng., 50, 1893 (2001) · Zbl 0998.76045
[8] Tezer-Sezgin, C. M.; Han Aydin, S., Eng. Anal. Bound. Elem., 30, 411 (2006) · Zbl 1187.76703
[9] Gingold, R. A.; Monaghan, J. J., Mon. Not. R. Astron. Soc., 181, 275 (1977)
[10] Nayroles, B.; Touzot, G.; Villon, P., Comput. Mech., 10, 307 (1992) · Zbl 0764.65068
[11] Lu, Y. Y.; Belytschko, T.; Gu, L., Comput. Methods Appl. Mech. Eng., 113, 397 (1994) · Zbl 0847.73064
[12] Liu, W. K.; Jun, S.; Zhang, Y. F., Internat. J. Numer. Methods Fluids, 20, 1081 (1995) · Zbl 0881.76072
[13] Hughes, T. J.R., Comput. Methods Appl. Mech. Eng., 127, 387 (1995) · Zbl 0866.76044
[14] Hughes, T. J.R.; Feijoo, G. R.; Luca, M.; Jean-Baptiste, Q., Comput. Methods Appl. Mech. Eng., 166, 3 (1998) · Zbl 1017.65525
[16] Masud, A.; Khurram, R. A., Comput. Methods Appl. Mech. Eng., 193, 1997 (2004) · Zbl 1067.76570
[17] Ayub, M.; Masud, A., Numer. Heat Transfer, 43, 601 (2003)
[18] Masud, A.; Hughes, T. J.R., Comput. Methods Appl. Mech. Eng., 1991, 4341 (2002)
[19] Masud, A.; Bergman, L. A., Comput. Methods Appl. Mech. Eng., 194, 1513 (2005)
[20] Franca, L. P.; Nesliturk, A.; Stynes, M., Comput. Methods Appl. Mech. Eng., 166, 35 (1998) · Zbl 0934.65127
[21] Franca, L. P.; Nesliturk, A., Int. J. Numer. Meth. Engng., 52, 433 (2001) · Zbl 1002.76066
[22] Nesliturk, A. I.; Tezer-Sezgin, M., J. Comput. Appl. Math., 192, 339 (2006) · Zbl 1155.76357
[23] Zhang, L.; Ouyang, J.; Zhang, X. H., Phys. Lett. A, 372, 5625 (2008) · Zbl 1223.76128
[24] Bourantas, G. C.; Skouras, E. D.; Loukopoulos, V. C.; Nikiforidis, G. C., J. Comput. Phys., 228, 8135 (2009) · Zbl 1391.76510
[25] Dehghan, M.; Mirzaei, D., Appl. Numer. Math., 59, 1043 (2009) · Zbl 1159.76034
[26] Verardi, S. L.L.; Machado, J. M.; Yang, S. Y., Finite Elem. Anal. Des., 39, 1173 (2003)
[27] Sherchiff, J. A., J. Fluid Mech., 1, 644 (1956) · Zbl 0074.21106
[28] Belytschko, T.; Krongauz, Y.; Organ, D., Comput. Methods Appl. Mech. Eng., 139, 3 (1996) · Zbl 0891.73075
[29] Belytschko, T.; Lu, Y. Y.; Gu, L., Int. J. Numer. Meth. Engng., 37, 229 (1994) · Zbl 0796.73077
[30] Fries, T. P.; Matthies, H. G., Comput. Methods Appl. Mech. Eng., 195, 6205 (2006)
[31] Chu, Y. A.; Moran, B., Modelling Simul. Mater. Sci. Eng., 3, 455 (1995)
[32] Belytschko, T.; Organ, D.; Krongauz, Y., Comput. Mech., 17, 186 (1995) · Zbl 0840.73058
[33] Khurram, R. A.; Zhang, Y.; Habashi, W. G., Comput. Methods Appl. Mech. Eng., 233, 180 (2012) · Zbl 1253.76059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.