×

Möbius invariant function spaces and Dirichlet spaces with superharmonic weights. (English) Zbl 1412.30143

The authors investigate the class of Dirichlet spaces \(\mathcal{D}_\mu\) with superharmonic weights induced by a positive Borel measure \(\mu\) on \(\mathbb D\) and the Möbius invariant function space \(M(\mathcal{D}_\mu)\) generated by the Hilbert function space \(\mathcal{D}_\mu\). The study contains four sections, starting with a presentation of the topic, remembering facts about \(Q_k\) and BMOA spaces. In the second section it is shown that \(\text{BMOA}=M(\mathcal{D}_\mu)\) if and only if \(\mu\) is a finite measure (Theorem 2.1). The case of infinite measure is analyzed in the last section. Applying this result, under the assumption that the weight function \(K\) is concave, the function \(K\) is characterized such that \(Q_k=\text{BMOA}\) (Theorem 2.2). In the third section a precise link between two distinct measures \(\mu\) and \(\nu\) is given such that \(\mathcal{D}_\mu=\mathcal D_\nu\). Also the relations between \(\mathcal{D}_\mu\), \(M(\mathcal{D}_\mu)\) and the Dirichlet space are investigated (Theorem 3.3). In the last section, the inner functions in \(M(\mathcal{D}_\mu)\) with infinite positive Borel measure \(\mu\) are investigated. It is proved that any inner function in \(M(\mathcal{D}_\mu)\) must be a Blaschke product. Also a criterion for Carleson-Newman Blaschke products to belong to \(M(\mathcal{D}_\mu)\) is given. To do this, the definitions of an interpolating sequence and an interpolating Blaschke product are given. The main result of the section is stated in Theorem 4.4.

MSC:

30H25 Besov spaces and \(Q_p\)-spaces
30J05 Inner functions of one complex variable
Full Text: DOI

References:

[1] A.Aleman, ‘Hilbert spaces of analytic functions between the Hardy and the Dirichlet space’, Proc. Amer. Math. Soc.115 (1992), 97-104.10.1090/S0002-9939-1992-1079693-X · Zbl 0758.30040 · doi:10.1090/S0002-9939-1992-1079693-X
[2] A.Aleman, ‘The multiplication operator on Hilbert spaces of analytic functions’, Habilitation, FernUniversität in Hagen, 1993.
[3] A.Aleman and A.Simbotin, ‘Estimates in Möbius invariant spaces of analytic functions’, Complex Var. Theory Appl.49 (2004), 487-510. · Zbl 1076.30037
[4] J.Arazy, S.Fisher and J.Peetre, ‘Möbius invariant function spaces’, J. reine angew. Math.363 (1985), 110-145. · Zbl 0566.30042
[5] D. H.Armitage and S. J.Gardiner, Classical Potential Theory, Springer Monographs in Mathematics (Springer, London, 2001).10.1007/978-1-4471-0233-5 · Zbl 0972.31001 · doi:10.1007/978-1-4471-0233-5
[6] R.Aulaskari and P.Lappan, ‘Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal’, in: Complex Analysis and its Applications, Pitman Research Notes in Mathematics, 305 (Longman Scientific and Technical, Harlow, 1994), 136-146. · Zbl 0826.30027
[7] R.Aulaskari, J.Xiao and R.Zhao, ‘On subspaces and subsets of BMOA and UBC’, Analysis15 (1995), 101-121.10.1524/anly.1995.15.2.101 · Zbl 0835.30027 · doi:10.1524/anly.1995.15.2.101
[8] S.Axler, ‘The Bergman space, the Bloch space, and commutators of multiplication operators’, Duke Math. J.53 (1986), 315-332.10.1215/S0012-7094-86-05320-2 · Zbl 0633.47014 · doi:10.1215/S0012-7094-86-05320-2
[9] A.Baernstein, Analytic Functions of Bounded Mean Oscillation, Aspects of Contemporary Complex Analysis (Academic Press, London-New York, 1980), 3-36. · Zbl 0492.30026
[10] G.Bao, N. G.Göğüş and S.Pouliasis, ‘On Dirichlet spaces with a class of superharmonic weights’, Canad. J. Math. doi:10.4153/CJM-2017-005-1. · Zbl 1410.30028
[11] G.Bao, N. G.Göğüş and S.Pouliasis, ‘𝓠_p spaces and Dirichlet type spaces’, Canad. Math. Bull.60 (2017), 690-704.10.4153/CMB-2017-006-1 · Zbl 1386.30053 · doi:10.4153/CMB-2017-006-1
[12] G.Bao, Z.Lou, R.Qian and H.Wulan, ‘Improving multipliers and zero sets in 𝓠_K spaces’, Collect. Math.66 (2015), 453-468.10.1007/s13348-014-0113-z · Zbl 1327.30068 · doi:10.1007/s13348-014-0113-z
[13] L.Carleson, ‘An interpolation problem for bounded analytic functions’, Amer. J. Math.80 (1958), 921-930.10.2307/2372840 · Zbl 0085.06504 · doi:10.2307/2372840
[14] L.Carleson, ‘Interpolation by bounded analytic functions and the corona problem’, Ann. of Math.76 (1962), 547-559.10.2307/1970375 · Zbl 0112.29702 · doi:10.2307/1970375
[15] P. L.Duren, Theory of H^p Spaces (Academic Press, New York-London, 1970). Reprinted with supplement by Dover Publications, Mineola, New York, 2000. · Zbl 0215.20203
[16] P. L.Duren and A.Schuster, ‘Finite unions of interpolation sequences’, Proc. Amer. Math. Soc.130 (2002), 2609-2615.10.1090/S0002-9939-02-06356-6 · Zbl 0994.30032 · doi:10.1090/S0002-9939-02-06356-6
[17] O.El-Fallah, K.Kellay, H.Klaja, J.Mashreghi and T.Ransford, ‘Dirichlet spaces with superharmonic weights and de Branges-Rovnyak spaces’, Complex Anal. Oper. Theory10 (2016), 97-107.10.1007/s11785-015-0474-7 · Zbl 1341.30046 · doi:10.1007/s11785-015-0474-7
[18] M.Essén and H.Wulan, ‘On analytic and meromorphic functions and spaces of 𝓠_K -type’, Illinois J. Math.46 (2002), 1233-1258. · Zbl 1048.30017
[19] M.Essén, H.Wulan and J.Xiao, ‘Several function-theoretic characterizations of Möbius invariant 𝓠_K spaces’, J. Funct. Anal.230 (2006), 78-115.10.1016/j.jfa.2005.07.004 · Zbl 1089.30049 · doi:10.1016/j.jfa.2005.07.004
[20] M.Essén and J.Xiao, ‘Some results on 𝓠_p spaces, 0 < p < 1’, J. reine angew. Math.485 (1997), 173-195. · Zbl 0866.30027
[21] J. B.Garnett, Bounded Analytic Functions. Revised 1st edn, Graduate Texts in Mathematics, 236 (Springer, 2007). · Zbl 0469.30024
[22] D.Girela, ‘Analytic functions of bounded mean oscillation’, in: Complex Function Spaces, Mekrijärvi, 1999, Department of Mathematics Report Series, 4 (ed. R.Aulaskari) (University of Joensuu, Joensuu, 2001), 61-170. · Zbl 0981.30026
[23] P.Gorkin and R.Mortini, ‘Two new characterizations of Carleson-Newman Blaschke products’, Israel J. Math.177 (2010), 267-284.10.1007/s11856-010-0046-5 · Zbl 1217.30050 · doi:10.1007/s11856-010-0046-5
[24] G.McDonald and C.Sundberg, ‘Toeplitz operators on the disc’, Indiana Univ. J. Math.28 (1979), 595-611.10.1512/iumj.1979.28.28042 · Zbl 0439.47022 · doi:10.1512/iumj.1979.28.28042
[25] J.Pau and J.Peláez, ‘On the zeros of functions in Dirichlet-type spaces’, Trans. Amer. Math. Soc.363 (2011), 1981-2002.10.1090/S0002-9947-2010-05108-6 · Zbl 1217.30004 · doi:10.1090/S0002-9947-2010-05108-6
[26] S.Richter, ‘A representation theorem for cyclic analytic two-isometries’, Trans. Amer. Math. Soc.328 (1991), 325-349.10.1090/S0002-9947-1991-1013337-1 · Zbl 0762.47009 · doi:10.1090/S0002-9947-1991-1013337-1
[27] L.Rubel and R.Timoney, ‘An extremal property of the Bloch space’, Proc. Amer. Math. Soc.75 (1979), 45-49.10.1090/S0002-9939-1979-0529210-9 · Zbl 0405.46020 · doi:10.1090/S0002-9939-1979-0529210-9
[28] H.Wulan and K.Zhu, Möbius Invariant 𝓠_K Spaces (Springer, Cham, 2017).10.1007/978-3-319-58287-0 · Zbl 1387.30001 · doi:10.1007/978-3-319-58287-0
[29] J.Xiao, ‘Some essential properties of 𝓠_p(∂𝛥)-spaces’, J. Fourier Anal. Appl.6 (2000), 311-323.10.1007/BF02511158 · Zbl 0960.42011 · doi:10.1007/BF02511158
[30] J.Xiao, Holomorphic 𝓠 Classes, Lecture Notes in Mathematics, 1767 (Springer, Berlin, 2001).10.1007/b87877 · Zbl 0983.30001 · doi:10.1007/b87877
[31] J.Xiao, Geometric 𝓠_p Functions (Birkhäuser, Basel-Boston-Berlin, 2006). · Zbl 1104.30036
[32] J.Zhou and G.Bao, ‘Analytic version of 𝓠_1(∂D) space’, J. Math. Anal. Appl.422 (2015), 1091-1102.10.1016/j.jmaa.2014.09.054 · Zbl 1300.30097 · doi:10.1016/j.jmaa.2014.09.054
[33] K.Zhu, Operator Theory in Function Spaces (American Mathematical Society, Providence, RI, 2007).10.1090/surv/138 · Zbl 1123.47001 · doi:10.1090/surv/138
[34] K.Zhu, ‘A class of Möbius invariant function spaces’, Illinois J. Math.51 (2007), 977-1002. · Zbl 1154.30040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.