×

Several function-theoretic characterizations of Möbius invariant \(\mathcal Q_K\) spaces. (English) Zbl 1089.30049

Let \(\mathbb D\) be the unit disc in \(\mathbb C\), \(H^\infty(\mathbb D)\) the class of bounded analytic functions on \(\mathbb D\). For \(w\in\mathbb D\), define \(g(z,w)=\log\frac{1}{|\sigma_w(z)|}\), where \(\sigma_w(z)=\frac{w-z}{1-\overline wz}\). Let \(k:[0,\infty)\to [0,\infty)\), and define \(Q_K\) to be the set of all \(f\) analytic in \(\mathbb D\) for which \(\| f\|^2_{Q_K}=\sup_{w\in\mathbb D}\int_{\mathbb D}\| f'(z)\|^2 K(g(z,w))\,dA(z)<\infty\), where \(dA(z)\) is the Euclidean area element on \(\mathbb D\). Different choices of \(k\) give familiar spaces such as the Bloch space and BMOA. The authors establish necessary and sufficient conditions for analytic functions to belong to \(Q_K\), where \(K\) satisfies seven conditions, which will not be given here.
One characterization of \(Q_K\) involves the concept of a \(K\)-Carleson measure: a positive measure \(d\mu\) is said to be a \(K\)-Carleson measure on \(\mathbb D\) if \(\sup_{I\subset\partial\mathbb D}\int_{S(I)}K\left(\frac{1-|z|}{|I|}\right)\,d\mu(z)<\infty\), where \(S(I)=\{rw\in\mathbb D: 1-|I|<r<1\), \(w\in I\}\). Then the authors prove: \(f\in Q_K\) if \(|f'(z)|^2 dA\) is a \(K\)-Carleson measure on \(\mathbb D\). This is used to give necessary and sufficient conditions for membership in \(Q_K\) based on behavior of boundary values: \(f\in H^2\) has \(f\in Q_K\) if and only if \(\sup_{I\subset\partial\mathbb D}\int_I\int_I\frac{|f(w)-f(z)|^2}{|w-z|^2}K\left(\frac{|w-z|}{I}\right)|dw||dz|<\infty.\) In addition, necessary and sufficient conditions are given for inner functions to belong to \(Q_K\). One final characterization is given in terms of \(|f(z)|\), \(z\in\mathbb D\cup \partial \mathbb D\).

MSC:

30H05 Spaces of bounded analytic functions of one complex variable
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
30D45 Normal functions of one complex variable, normal families
46E15 Banach spaces of continuous, differentiable or analytic functions
47A15 Invariant subspaces of linear operators
Full Text: DOI

References:

[1] Aleman, A., Hilbert spaces of analytic functions between the Hardy space and the Dirichlet space, Proc. Amer. Math. Soc., 115, 97-104 (1992) · Zbl 0758.30040
[2] Aulaskari, R.; Stegenga, D.; Xiao, J., Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math., 26, 485-506 (1996) · Zbl 0861.30033
[3] Aulaskari, R.; Xiao, J.; Zhao, R., On subspaces and subsets of BMOA and UBC, Analysis, 15, 101-121 (1995) · Zbl 0835.30027
[4] A. Baernstein II, Analytic functions of bounded mean oscillation, Aspects of Contemporary Complex Analysis, Academic Press, London, 1980, pp. 3-36.; A. Baernstein II, Analytic functions of bounded mean oscillation, Aspects of Contemporary Complex Analysis, Academic Press, London, 1980, pp. 3-36. · Zbl 0492.30026
[5] Dyakonov, K., Absolute values of BMOA functions, Rev. Math. Iberoamericana, 15, 3, 1-23 (1999) · Zbl 0949.30028
[6] M. Essén, A survey of \(\mathcal{Q} \)-spaces and \(\mathcal{Q}^{\#} \)-classes, Analysis and applications—ISAAC 2001 (Berlin), vol. 10, International Society for Analytical Application in Computers, Kluwer Academic Publisher, Dordrecht, 2003, pp. 73-87.; M. Essén, A survey of \(\mathcal{Q} \)-spaces and \(\mathcal{Q}^{\#} \)-classes, Analysis and applications—ISAAC 2001 (Berlin), vol. 10, International Society for Analytical Application in Computers, Kluwer Academic Publisher, Dordrecht, 2003, pp. 73-87. · Zbl 1055.30028
[7] Essén, M.; Wulan, H., On analytic and meromorphic functions and spaces of \(Q_K\)-type, Illinois J. Math., 46, 1233-1258 (2002) · Zbl 1048.30017
[8] Essén, M.; Xiao, J., Some results on \(Q_p\)-spaces, \(0 < p < 1\), J. Reine Angew. Math., 485, 173-195 (1997) · Zbl 0866.30027
[9] Garnett, J. B., Bounded Analytic Functions (1981), Academic Press: Academic Press New York, London · Zbl 0469.30024
[10] Rubel, L.; Timoney, R., An extremal property of the Bloch space, Proc. Amer. Math. Soc., 75, 45-49 (1979) · Zbl 0405.46020
[11] Rudin, W., Real and Complex Analysis (1974), McGraw-Hill: McGraw-Hill New York · Zbl 0278.26001
[12] Stegenga, D., Multipliers of the Dirichlet space, Illinois J. Math., 24, 113-139 (1980) · Zbl 0432.30016
[13] Wulan, H., On some classes of meromorphic functions, Ann. Acad. Sci. Fenn. Math. Diss., 116, 1-57 (1998) · Zbl 0912.30021
[14] Wulan, H.; Wu, P., Characterizations of \(Q_K\) spaces, J. Math. Anal. Appl., 254, 484-497 (2001) · Zbl 1092.30052
[15] Xiao, J., Holomorphic \(Q\) Classes, (Lecture Notes in Mathematics, vol. 1767 (2001), Springer: Springer Berlin) · Zbl 0983.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.