×

String theory integrands and supergravity divergences. (English) Zbl 1411.83136

Summary: At low energies, interactions of massless particles in type II strings compactified on a torus \(T^d\) are described by an effective Wilsonian action \( \mathcal{S} (\Lambda)\), consisting of the usual supergravity Lagrangian supplemented by an infinite series of higher-derivative vertices, including the much studied \( {\nabla}^{4p+6q} {\mathcal{R}}^4\) gravitational interactions. Using recent results on the asymptotics of the integrands governing four-graviton scattering at genus one and two, I determine the \({\Lambda}\)-dependence of the coefficient of the above interaction, and show that the logarithmic terms appearing in the limit \({\Lambda} \rightarrow 0\) 0 are related to UV divergences in supergravity amplitudes, augmented by stringy interactions. This provides a strong consistency check on the expansion of the integrand near the boundaries of moduli space, in particular it elucidates the appearance of odd zeta values in these expansions. I briefly discuss how these logarithms are reflected in non-analytic terms in the low energy expansion of the string scattering amplitude.

MSC:

83E50 Supergravity
83E30 String and superstring theories in gravitational theory
81U20 \(S\)-matrix theory, etc. in quantum theory
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys.60 (1988) 917 [INSPIRE].
[2] E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE]. · Zbl 1421.81101
[3] R. Donagi and E. Witten, Supermoduli Space Is Not Projected, Proc. Symp. Pure Math.90 (2015) 19 [arXiv:1304.7798] [INSPIRE]. · Zbl 1356.14021
[4] M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys.B 198 (1982) 474 [INSPIRE].
[5] A. Sen, Wilsonian Effective Action of Superstring Theory, JHEP01 (2017) 108 [arXiv:1609.00459] [INSPIRE]. · Zbl 1373.83112 · doi:10.1007/JHEP01(2017)108
[6] M.B. Green, J.G. Russo and P. Vanhove, String theory dualities and supergravity divergences, JHEP06 (2010) 075 [arXiv:1002.3805] [INSPIRE]. · Zbl 1288.81107 · doi:10.1007/JHEP06(2010)075
[7] M.B. Green and P. Vanhove, The low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev.D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].
[8] C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys.B 438 (1995) 109 [hep-th/9410167] [INSPIRE]. · Zbl 1052.83532
[9] B. Pioline, D6R4amplitudes in various dimensions, JHEP04 (2015) 057 [arXiv:1502.03377] [INSPIRE].
[10] A. Basu, Non-analytic terms from nested divergences in maximal supergravity, Class. Quant. Grav.33 (2016) 145007 [arXiv:1604.02667] [INSPIRE]. · Zbl 1346.83060 · doi:10.1088/0264-9381/33/14/145007
[11] D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys.B 277 (1986) 1 [INSPIRE].
[12] M.B. Green and J.H. Schwarz, Supersymmetrical String Theories, Phys. Lett.109B (1982) 444 [INSPIRE]. · doi:10.1016/0370-2693(82)91110-8
[13] M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP02 (2008) 020 [arXiv:0801.0322] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/020
[14] E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one Type II superstring low energy expansion, JHEP08 (2015) 041 [arXiv:1502.06698] [INSPIRE]. · Zbl 1388.81515 · doi:10.1007/JHEP08(2015)041
[15] E. D’Hoker, M.B. Green, Ö. Gürdogan and P. Vanhove, Modular Graph Functions, Commun. Num. Theor. Phys.11 (2017) 165 [arXiv:1512.06779] [INSPIRE]. · Zbl 1426.11082 · doi:10.4310/CNTP.2017.v11.n1.a4
[16] E. D’Hoker and D.H. Phong, Two loop superstrings. 1. Main formulas, Phys. Lett.B 529 (2002) 241 [hep-th/0110247] [INSPIRE]. · Zbl 0990.81100
[17] E. D’Hoker and D.H. Phong, Lectures on two loop superstrings, Conf. Proc.C 0208124 (2002) 85 [hep-th/0211111] [INSPIRE].
[18] E. D’Hoker and D.H. Phong, Two-loop superstrings VI: Non-renormalization theorems and the 4-point function, Nucl. Phys.B 715 (2005) 3 [hep-th/0501197] [INSPIRE]. · Zbl 1207.81111
[19] E. D’Hoker and M.B. Green, Zhang-Kawazumi Invariants and Superstring Amplitudes, arXiv:1308.4597 [INSPIRE]. · Zbl 1298.81260
[20] E. D’Hoker, M.B. Green, B. Pioline and R. Russo, Matching the D6R4interaction at two-loops, JHEP01 (2015) 031 [arXiv:1405.6226] [INSPIRE].
[21] E. D’Hoker, M.B. Green and B. Pioline, Higher genus modular graph functions, string invariants and their exact asymptotics, to appear in Commun. Math. Phys. (2018) [arXiv:1712.06135] [INSPIRE].
[22] B. Pioline and R. Russo, Infrared divergences and harmonic anomalies in the two-loop superstring effective action, JHEP12 (2015) 102 [arXiv:1510.02409] [INSPIRE]. · Zbl 1388.81882
[23] E. D’Hoker, M.B. Green and B. Pioline, Asymptotics of the D8ℛ4genus-two string invariant, Commun. Num. Theor. Phys.13 (2019) [arXiv:1806.02691] [INSPIRE]. · Zbl 1416.83116
[24] M.B. Green, J.G. Russo and P. Vanhove, Modular properties of two-loop maximal supergravity and connections with string theory, JHEP07 (2008) 126 [arXiv:0807.0389] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/126
[25] Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys.B 530 (1998) 401 [hep-th/9802162] [INSPIRE].
[26] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity, Phys. Rev.D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].
[27] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math.28 (1981) 415. · Zbl 0505.10011
[28] A. Basu, Non-BPS interactions from the type-II one loop four graviton amplitude, Class. Quant. Grav.33 (2016) 125028 [arXiv:1601.04260] [INSPIRE]. · Zbl 1342.83323 · doi:10.1088/0264-9381/33/12/125028
[29] K. Bringmann, N. Diamantis and S. Ehlen, Regularized inner products and errors of modularity, Int. Math. Res. Not.2017 (2016) 7420. · Zbl 1405.11052
[30] B. Pioline, A Theta lift representation for the Kawazumi-Zhang and Faltings invariants of genus-two Riemann surfaces, J. Number Theor.163 (2016) 520 [arXiv:1504.04182] [INSPIRE]. · Zbl 1408.14096 · doi:10.1016/j.jnt.2015.12.021
[31] N. Kawazumi, Johnson’s homomorphisms and the Arakelov-Green function, arXiv:0801.4218.
[32] S.-W. Zhang, Gross-Schoen cycles and dualising sheaves, Invent. Math.179 (2010) 1. · Zbl 1193.14031 · doi:10.1007/s00222-009-0209-3
[33] E. Gottschling, Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades, Math. Ann.138 (1959) 103. · Zbl 0088.28903 · doi:10.1007/BF01342938
[34] I. Florakis and B. Pioline, On the Rankin-Selberg method for higher genus string amplitudes, Commun. Num. Theor. Phys.11 (2017) 337 [arXiv:1602.00308] [INSPIRE]. · Zbl 1426.11050 · doi:10.4310/CNTP.2017.v11.n2.a4
[35] A. Basu, Perturbative type-II amplitudes for BPS interactions, Class. Quant. Grav.33 (2016) 045002 [arXiv:1510.01667] [INSPIRE]. · Zbl 1338.83168
[36] N. Berkovits, Super-Poincaré covariant two-loop superstring amplitudes, JHEP01 (2006) 005 [hep-th/0503197] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/005
[37] H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP10 (2013) 217 [arXiv:1308.6567] [INSPIRE]. · Zbl 1342.83103
[38] G. Bossard and A. Kleinschmidt, Supergravity divergences, supersymmetry and automorphic forms, JHEP08 (2015) 102 [arXiv:1506.00657] [INSPIRE]. · Zbl 1388.83755 · doi:10.1007/JHEP08(2015)102
[39] S. Stieberger, Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory, Phys. Rev. Lett.106 (2011) 111601 [arXiv:0910.0180] [INSPIRE]. · doi:10.1103/PhysRevLett.106.111601
[40] O. Schlotterer and S. Stieberger, Motivic Multiple Zeta Values and Superstring Amplitudes, J. Phys.A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE]. · Zbl 1280.81112
[41] M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP10 (2013) 188 [arXiv:1307.3534] [INSPIRE]. · Zbl 1342.83372 · doi:10.1007/JHEP10(2013)188
[42] P. Tourkine, Tropical Amplitudes, Annales Henri Poincaré18 (2017) 2199 [arXiv:1309.3551] [INSPIRE]. · Zbl 1387.81292
[43] K. Bringmann, B. Kane and M. Viazovska, Theta lifts and local Maass forms, Math. Res. Lett.20 (2013) 213. · Zbl 1296.11036 · doi:10.4310/MRL.2013.v20.n2.a2
[44] K. Bringmann and B. Kane, Modular local polynomials, Math. Res. Lett.23 (2016) 973. · Zbl 1402.11072 · doi:10.4310/MRL.2016.v23.n4.a2
[45] D. Zagier, unpublished notes (2008).
[46] S. Wolpert, Asymptotics of the Spectrum and the Selberg Zeta Function on the Space of Riemann Surfaces, Commun. Math. Phys.112 (1987) 283. · Zbl 0629.58029 · doi:10.1007/BF01217814
[47] S.F. Moosavian and R. Pius, Hyperbolic Geometry and Closed Bosonic String Field Theory I: The String Vertices Via Hyperbolic Riemann Surfaces, arXiv:1706.07366 [INSPIRE]. · Zbl 1421.83122
[48] J. Fay, Theta functions on Riemann surfaces, Lectures Notes in Mathematics, vol. 352, Springer, Berlin, Germany (1973). · Zbl 0281.30013
[49] B. Zwiebach, How covariant closed string theory solves a minimal area problem, Commun. Math. Phys.136 (1991) 83 [INSPIRE]. · Zbl 0725.30032 · doi:10.1007/BF02096792
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.