×

On the exact solution of the Riemann problem for blood flow in human veins, including collapse. (English) Zbl 1411.76182

Summary: We solve exactly the Riemann problem for the non-linear hyperbolic system governing blood flow in human veins and note that, as modeled here, veins do not admit complete collapse, that is zero cross-sectional area \(A\). This means that the Cauchy problem will not admit zero cross-sectional areas as initial condition. In particular, rarefactions and shock waves (elastic jumps), classical waves in the conventional Riemann problem, cannot be connected to the zero state with \(A = 0\). Moreover, we show that the area \(A_{*}\) between two rarefaction waves in the solution of the Riemann problem can never attain the value zero, unless the data velocity difference \(u_R - u_L\) tends to infinity. This is in sharp contrast to analogous systems such as blood flow in arteries, gas dynamics and shallow water flows, all of which admitting a vacuum state. We discuss the implications of these findings in the modelling of the human circulation system that includes the venous system.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
Full Text: DOI

References:

[1] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. Visual. Sci., 2, 163-197 (2000) · Zbl 1096.76042
[2] Sherwin, S. J.; Formaggia, L.; Peiró, J.; Franke, V., Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int. J. Numer. Meth. Fluids, 43, 673-700 (2003) · Zbl 1032.76729
[3] Matthys, K. S.; Alastruey, J.; Peiró, J.; Khir, A. W.; Segers, P.; Verdonck, P. R.; Parker, K. H.; Sherwin, S. J., Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements, J. Biomech., 40, 15, 3476-3486 (2007)
[4] Alastruey, J.; More, S. M.; Parker, K. H.; David, T.; Peiró, J.; Sherwin, S. J., Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models, Int. J. Numer. Meth. Fluids, 56, 1061-1067 (2008) · Zbl 1131.92021
[5] Alastruey, J.; Khir, A. W.; Matthys, K. S.; Segers, P.; Sherwin, S. J., Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements, J. Biomech., 44, 2250-2258 (2011)
[6] Liang, F.; Takagi, S.; Himeno, R.; Liu, H., Multi-scale modelling of the human cardiovascular system with applications to aortic valvular and arterial stenoses, Med. Biol. Eng. Comput., 47, 743-755 (2009)
[7] Liang, F.; Takagi, S.; Himeno, R.; Liu, H., Biomechanical characterization of ventricular-arterial coupling during aging: A multi-scale model study, Journal of Biomechanics, 42, 6, 692-704 (2009)
[8] Blanco, P. J.; de Queiroz, R. A.B.; Feijó, R. A., A computational approach to generate concurrent arterial networks in vascular territories, Int. J. Numer. Meth. Biomed. Engng., 29, 601-614 (2013)
[9] Liang, F.; Senzaki, H.; Kurishima, C.; Sughimoto, K.; Inuzuka, R.; Liu, H., Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study, Am. J. Physiol.: Heart Circu. Physiol., 42, 307, H1056-H1072 (2014)
[10] Boileau, E.; Nithiarasu, P.; Blanco, P. J.; Müller, L. O.; Fossan, F. E.; Hellevik, L. R.; Donders, W. P.; Huberts, W.; Willemet, M.; Alastruey, J., A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling, Int. J. Numer. Meth. Biomed. Eng., 31, 10 (2015)
[11] Guan, D.; Liang, F.; Gremaud, P. A., Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model, J. Biomech., 49, 9, 1583-1592 (2016)
[12] Müller, L. O.; Blanco, P. J.; Watanabe, S. M.; Feijó, R. A., A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model, Int. J. Numer. Methods Biomed. Eng. (2016)
[13] Bessonov, N.; Sequeira, A.; Simakov, S.; Vassilevskii, Y.; Volpert, V., Methods of Blood Flow Modelling, Math. Model. Nat. Phenom., 11, 1, 1-25 (2016) · Zbl 1384.92024
[14] Strocchi, M.; Contarino, C.; Zhang, Q.; Bonmassari, R.; Toro, E., A global mathematical model for the simulation of stenoses and bypass placement in the human arterial system, Appl. Math. Comput., 300, 21-39 (2017) · Zbl 1411.76183
[15] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular Mathematics. Modeling and simulation of the circulatory system (2009), Springer · Zbl 1300.92005
[16] Quarteroni, A.; Vergara, C.; Veneziani, A., Geometric multiscale modelling of the cardiovascular system, between theory and practice, Comput. Methods Appl. Mech. Eng., 302, 193-252 (2016) · Zbl 1423.76528
[17] Pedley, T. J., The Fluid Dynamics of Large Blood Vessels (1980), Cambridge University Press · Zbl 0449.76100
[18] Fung, Y. C., Biomechanics Circulation (1997), Springer
[19] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer-Verlag · Zbl 1227.76006
[20] Müller, L. O.; Toro, E. F., Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int. J. Numer. Methods Biomed. Eng., 29, 388-1411 (2013)
[21] Müller, L. O.; Parés, C.; Toro, E. F., Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties, J. Comput. Phys., 242, 53-85 (2013) · Zbl 1323.92066
[22] Contarino, C.; Montecinos, G. I.; Borsche, R.; Kall, J.; Toro, E. F., Junction-Generalized Riemann Problem for Stiff Hyperbolic Balance Laws in Networks: an Implicit Solver and ADER Schemes, J. Comput. Phys., 315, 409-433 (2016) · Zbl 1349.76318
[23] Müller, L. O.; Toro, E. F., A global multi-scale model for the human circulation with emphasis on the venous system, Int. J. Numer. Methods Biomed. Eng., 30, 7, 681-725 (2013)
[24] Müller, L. O.; Toro, E. F., Enhanced global mathematical model for studying cerebral venous blood flow, J. Biomech., 47, 13, 3361-3372 (2014)
[25] Caiazzo, A.; Montecinos, G. I.; Müller, L. O.; Haacke, E. M.; Toro, E. F., Computational Haemodynamics in Stenotic Internal Jugular Veins, J. Math. Biol., 70, 745-772 (2015) · Zbl 1350.92012
[26] Toro, E. F.; Müller, L. O.; Cristini, M.; Menegatti, E.; Zamboni, P., Impact of Jugular Vein Valve Function on Cerebral Venous Haemodynamics, Current Neurovascular Res., 12, 4, 384-397 (2015)
[27] Toro, E. F., Brain venous haemodynamics, neurological diseases and mathematical modelling. A Review, Appl. Math. Comput., 272, 542-579 (2016) · Zbl 1410.76487
[28] Mynard, J. P.; Smolich, J. J., One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation, Annals Biomed. Eng., 43, 6, 1443-1460 (2012)
[29] Toro, E. F.; Siviglia, A., Simplified blood flow model with discontinuous vessel properties: Analysis and exact solutions, Modeling of Physiological Flows, 19-39 (2012), Springer
[30] Toro, E. F.; Siviglia, A., Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions, Commun. Comput. Phys., 13, 2, 361-385 (2013) · Zbl 1373.76362
[31] Han, E.; Warnecke, G.; Toro, E. F.; Siviglia, A., On Riemann Solutions to Weakly Hyperbolic Systems: Part 1. Modelling Subcritical Flows in Arteries, Technical Report NI15003-NPA (2015), Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK
[32] Han, E.; Warnecke, G.; Toro, E. F.; Siviglia, A., On Riemann Solutions to Weakly Hyperbolic Systems: Part 2. Modelling Supercritical Flows in Arteries, Technical Report NI15004-NPA (2015), Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK
[33] Doepp, F.; Schreiber, S. J.; von Muenster, T.; Rademacher, J.; Klingebiel, R.; Valduezza, J. M., How does the blood leave the brain? A systemic ultrasound analysis of cerebral venous drainage patterns, Neuroradiology, 46, 565-570 (2004)
[34] Toro, E. F.; Castro, C. E.; Lee, B. J., A novel numerical flux for the 3D Euler equations with general equation of state, J. Comput. Phys., 303, 80-94 (2015) · Zbl 1349.76398
[35] Moreno, A. H.; Kotz, A. I.; Gold, L. D.; Reddy, R. V., Mechanics of Distension of Dog Veins and Other Very Thin-Walled Tubular Structures, Cir. Res., 27, 1069-1080 (1970)
[36] Riemann, B., Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 8, 43-65 (1860)
[37] Toro, E. F., Shock-Capturing Methods for Free-Surface Shallow Flows (2001), Wiley and Sons Ltd. · Zbl 0996.76003
[38] Toro, E. F.; Billett, S. J., Centred TVD Schemes for Hyperbolic Conservation Laws, IMA J. Numer. Anal., 20, 47-79 (2000) · Zbl 0943.65100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.