×

A global mathematical model for the simulation of stenoses and bypass placement in the human arterial system. (English) Zbl 1411.76183

Summary: This paper is concerned with a global mathematical model for the human circulation; we describe its construction, its validation and its application to study the haemodynamical effect of stenoses and bypass placement in the arterial system. A geometric multiscale approach is adopted combining one-dimensional (1D) descriptions to represent 55 major arteries and zero-dimensional (0D) compartmental descriptions for the heart, lungs, the venous system and the microcirculation. Modern non-linear numerical methods are implemented for solving the 1D systems of hyperbolic partial differential equations and high-order Runge-Kutta methods are used to solve the systems of Ordinary Differential Equations resulting from the compartmental models. The complete global mathematical model is then validated for healthy and stenotic cases comparing numerical predictions from the model against in-vivo measurements. Results show overall satisfactory agreement. In addition, a sensitivity analysis is conducted in order to assess the influence of the most important parameters on some haemodynamical quantities of interest. We then apply the model to simulate the haemodynamics for healthy controls and subjects with arterial stenosis. We study the haemodynamical effect of bypass placement, considering different locations in the arterial system, different degrees of severity, for both single and multiple arterial stenoses. Haemodynamical quantities of interest in the study are local pressure and flow rate. We observe that large stenotic plaques near the heart cause abnormally strong pressure waves in the circulatory system and two adjacent occlusions worsen the phenomenon. We find that the mathematical model is capable of predicting the most convenient bypass location and graft dimensions, consistent with normal haemodynamics.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
92C30 Physiology (general)
Full Text: DOI

References:

[1] Crowther, M. A., Pathogenesis of atherosclerosis, Hematology, 2005, 1, 436-441 (2005)
[2] Imanishi, M.; Akabane, S.; Takamiya, M.; Kawamura, M.; Matsushima, Y.; Kuramochi, M.; Omae, T., Critical degree of renal arterial stenosis that causes hypertension in dogs, Angiology, 43, 10, 833-842 (1992)
[3] May, A. G.; de Berg, L. V.; Deweese, J. A.; Rob, C. G., Critical arterial stenosis, Surgery, 54, 1, 250-259 (1963)
[4] Pate, G., Association between aortic stenosis and hypertension., J. Heart Valve Dis., 11, 5, 612-614 (2002)
[5] Ross, R., 141. atherosclerosis — an inflammatory disease, Fibrinolysis, 10, 44 (1996)
[6] Ross, R., Atherosclerosis — an inflammatory disease, New Engl. J. Med., 340, 2, 115-126 (1999)
[7] Brown, B. G.; Bolson, E. L.; Dodge, H. T., Dynamic mechanisms in human coronary stenosis., Circulation, 70, 6, 917-922 (1984)
[8] Avolio, A. P., Multi-branched model of the human arterial system, Med. Biol. Eng. Comput., 18, 6, 709-718 (1980)
[9] Formaggia, L.; Nobile, F.; Quarteroni, A.; Veneziani, A., Multiscale modelling of the circulatory system: a preliminary analysis, Comput. Vis. Sci., 2, 2-3, 75-83 (1999) · Zbl 1067.76624
[10] Formaggia, L.; Lamponi, D.; Tuveri, M.; Veneziani, A., Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Comput. Methods Biomech. Biomed. Eng., 9, 5, 273-288 (2006)
[11] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System (2010), Springer
[12] Müller, L. O.; Toro, E. F., Enhanced global mathematical model for studying cerebral venous blood flow, J. Biomech., 47, 13, 3361-3372 (2014)
[13] Müller, L. O.; Toro, E. F., A global multiscale mathematical model for the human circulation with emphasis on the venous system, Int. J. Numer. Meth. Biomed. Engng., 30, 7, 681-725 (2014)
[14] Garcia, D.; Durand, L., Modeling of Aortic Stenosis and Systemic Hypertension, Wiley encyclopedia of biomedical engineering, 10 (2006), Wiley: Wiley New York.
[15] Liang, F.; Fukasaku, K.; Liu, H.; Takagi, S., A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery, Biomed. Eng. Online, 10, 1, 84 (2011)
[16] Liang, F.; Takagi, S.; Himeno, R.; Liu, H., Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses, Med. Biol. Eng. Comput., 47, 7, 743-755 (2009)
[17] Müller, L.; Toro, E.; Haacke, E.; Utriainen, D., Impact of CCSVI on cerebral haemodynamics: a mathematical study using MRI angiographic and flow data, Phlebol. J. Venous Dis., 31, 5, 305-324 (2015)
[18] Ku, J. P.; Draney, M. T.; Arko, F. R.; Lee, W. A.; Chan, F. P.; Pelc, N. J.; Zarins, C. K.; Taylor, C. A., In vivo validation of numerical prediction of blood flow in arterial bypass grafts, Ann. Biomed. Eng., 30, 6, 743-752 (2002)
[19] Mintz, L. J.; Ingels, N. B.; Daughters, G. T.; Stinson, E. B.; Alderman, E. L., Sequential studies of left ventricular function and wall motion after coronary arterial bypass surgery, Am. J. Cardiol., 45, 2, 210-216 (1980)
[20] Yusuf, S.; Zucker, D.; Passamani, E.; Peduzzi, P.; Takaro, T.; Fisher, L.; Kennedy, J.; Davis, K.; Killip, T.; Norris, R., Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the coronary artery bypass graft surgery trialists collaboration, The Lancet, 344, 8922, 563-570 (1994)
[21] Maasrani, M.; Verhoye, J.-P.; Corbineau, H.; Drochon, A., Analog electrical model of the coronary circulation in case of multiple revascularizations, Ann. Biomed. Eng., 36, 7, 1163-1174 (2008)
[22] Marchandise, E.; Willemet, M.; Lacroix, V., A numerical hemodynamic tool for predictive vascular surgery, Med. Eng. Phys., 31, 1, 131-144 (2009)
[23] Steele, B.; Wan, J.; Ku, J.; Hughes, T.; Taylor, C., In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts, IEEE Trans. Biomed. Eng., 50, 6, 649-656 (2003)
[24] Pietrabissa, R.; Mantero, S.; Marotta, T.; Menicanti, L., A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses, Med. Eng. Phys., 18, 6, 477-484 (1996)
[25] Mynard, J. P.; Smolich, J. J., One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation, Ann. Biomed. Eng., 43, 6, 1443-1460 (2015)
[26] Müller, L. O.; Blanco, P. J.; Watanabe, S. M.; Feijóo, R. A., A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model, Int. J. Numer. Methods Biomed. Eng., 32, 10, e02761 (2016)
[27] Toro, E. F.; Millington, R. C.; Nejad, L. A.M., Towards very high order Godunov schemes, Godunov Methods, 907-940 (2001), Springer · Zbl 0989.65094
[28] Sherwin, S.; Franke, V.; Peiró, J.; Parker, K., One-dimensional modelling of a vascular network in space-time variables, J. Eng. Math., 47, 3/4, 217-250 (2003) · Zbl 1200.76230
[29] Sun, Y.; Beshara, M.; Lucariello, R.; Chiaramida, S., A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex, Am. J. Physiol. Heart Circ. Physiol., 272, 3, H1499-H1515 (1997)
[30] Alastruey, J.; Parker, K. H.; Peiró, J.; Sherwin, S. J., Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation, Commun. Comput. Phys., 4, 2, 317-336 (2008) · Zbl 1364.76248
[31] Alastruey, J.; Khir, A. W.; Matthys, K. S.; Segers, P.; Sherwin, S. J.; Verdonck, P. R.; Parker, K. H.; Peiró, J., Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements, J. Biomech., 44, 12, 2250-2258 (2011)
[32] Blanco, P. J.; Watanabe, S. M.; Dari, E. A.; Passos, M. A.R.; Feijóo, R. A., Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms, Biomech. Model. Mechanobiol., 13, 6, 1303-1330 (2014)
[33] Toro, E. F.; Siviglia, A., Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions, Commun. Comput. Phys., 13, 02, 361-385 (2013) · Zbl 1373.76362
[34] Toro, E. F., Brain venous haemodynamics, neurological diseases and mathematical modelling: a review, Appl. Math. Comput., 272, 542-579 (2016) · Zbl 1410.76487
[35] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. Vis. Sci., 2, 4, 163-197 (2000) · Zbl 1096.76042
[36] Paeme, S.; Moorhead, K. T.; Chase, J. G.; Lambermont, B.; Kolh, P.; D’orio, V.; Pierard, L.; Moonen, M.; Lancellotti, P.; Dauby, P. C., Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency, Biomed. Eng. Online, 10, 1, 86 (2011)
[37] Young, D. F.; Tsai, F. Y., Flow characteristics in models of arterial stenoses — I. steady flow, J. Biomech., 6, 4, 395-410 (1973)
[38] Young, D. F.; Tsai, F. Y., Flow characteristics in models of arterial stenoses — II. unsteady flow, J. Biomech., 6, 5, 547-559 (1973)
[39] Montecinos, G. I.; Toro, E. F., Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes, J. Comput. Phys., 275, 415-442 (2014) · Zbl 1349.65378
[40] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci., 458, 271-281 (2002) · Zbl 1019.35061
[41] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer-Verlag · Zbl 1227.76006
[42] Contarino, C.; Toro, E. F.; Montecinos, G. I.; Borsche, R.; Kall, J., Junction-generalized Riemann problem for stiff hyperbolic balance laws in networks: an implicit solver and ADER schemes, J. Comput. Phys., 315, 409-433 (2016) · Zbl 1349.76318
[43] Borsche, R.; Kall, J., ADER schemes and high order coupling on networks of hyperbolic conservation laws, J. Comput. Phys., 273, 658-670 (2014) · Zbl 1352.65227
[44] Borsche, R.; Kall, J., High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, J. Comput. Phys., 327, 678-699 (2016) · Zbl 1373.35192
[45] Müller, L. O.; Blanco, P. J., A high order approximation of hyperbolic conservation laws in networks: application to one-dimensional blood flow, J. Comput. Phys., 300, 423-437 (2015) · Zbl 1349.76945
[46] Liang, F.; Senzaki, H.; Kurishima, C.; Sughimoto, K.; Inuzuka, R.; Liu, H., Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study, AJP Heart Circ. Physiol., 307, 7, H1056-H1072 (2014)
[47] Kroeker, E. J.; Wood, E. H., Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man, Circ. Res., 3, 6, 623-632 (1955)
[48] Reymond, P.; Merenda, F.; Perren, F.; Rüfenacht, D.; Stergiopulos, N., Validation of a one-dimensional model of the systemic arterial tree, Am. J. Physiol. Heart Circ. Physiol., 297, 1, H208-H222 (2009)
[49] Greve, J. M.; Les, A. S.; Tang, B. T.; Blomme, M. T.D.; Wilson, N. M.; Dalman, R. L.; Pelc, N. J.; Taylor, C. A., Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics, Am. J. Physiol. Heart Circ. Physiol., 291, 4, H1700-H1708 (2006)
[50] Hill, J. A.; Lambert, C. R.; Pepine, C. J., Diagnostic and Therapeutic Cardiac Catheterization (1994), Williams & Wilkins
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.