×

The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. (English) Zbl 1411.35238

Summary: In this work we prove that the initial value problem associated to the fractional two-dimensional Benjamin-Ono equation \[\begin{aligned} u_t+ D^\alpha_x u_x+\mathcal{H} u_{yy} & =0,\qquad (x,y)\in\mathcal{R}^2,\ t\in\mathcal{R},\\ u(x,y,0) &= u_0(x, y),\end{aligned}\] where \(0<\alpha\le 1\), \(D^\alpha_x\) denotes the operator defined through the Fourier transform by \[(D^\alpha_x f)\widehat{}(\xi,\eta):= |\xi|^\alpha\widehat f(\xi,\eta),\] and \(\mathcal{H}\) denotes the Hilbert transform with respect to the variable \(x\), is locally well-posed in the Sobolev space \(H^*(\mathbb{R}^2)\) with \(s>\frac{3}{2}+ \frac{1}{4}\ (1-\alpha)\).

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1991. · Zbl 0762.35001
[2] M. J. Ablowitz; H. Segur, Long internal waves in fluids of great depth, Stud. App. Math., 62, 249-262 (1980) · Zbl 0447.76013 · doi:10.1002/sapm1980623249
[3] B. Akers; P. Milewski, A model equation for wave packet solitary waves arising from capillary-gravity flows, Studies in Applied Mathematics, 122, 249-274 (2009) · Zbl 1173.35114 · doi:10.1111/j.1467-9590.2009.00432.x
[4] J. L. Bona; R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278, 555-601 (1975) · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[5] A. Cunha; A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261, 2041-2067 (2016) · Zbl 1338.35113 · doi:10.1016/j.jde.2016.04.022
[6] A. Esfahani; A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139, 943-956 (2011) · Zbl 1211.35235 · doi:10.1090/S0002-9939-2010-10532-4
[7] A. Esfahani; A. Pastor, Two dimensional solitary waves in shear flows, Calc. Var. Partial Differential Equations, 57, 57-102 (2018) · Zbl 1395.35165 · doi:10.1007/s00526-018-1383-1
[8] T. Kato, Quasilinear equations of evolution, with applications to PDE, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, (1975), 25-70. · Zbl 0315.35077
[9] T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28, 89-99 (1979) · Zbl 0415.35070 · doi:10.1007/BF01647967
[10] T. Kato; G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41, 891-907 (1988) · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[11] C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. I.H. PoincaréAN, 21, 87-838 (2004) · Zbl 1072.35162 · doi:10.1016/j.anihpc.2003.12.002
[12] C. Kenig; K. D. Koenig, On the local well posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10, 879-895 (2003) · Zbl 1044.35072 · doi:10.4310/MRL.2003.v10.n6.a13
[13] C. Kenig; G. Ponce; L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Mathematical Journal, 59, 585-610 (1989) · Zbl 0795.35105 · doi:10.1215/S0012-7094-89-05927-9
[14] C. Kenig; G. Ponce; L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40, 33-69 (1991) · Zbl 0738.35022 · doi:10.1512/iumj.1991.40.40003
[15] C. Kenig; G. Ponce; L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 527-620 (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[16] B. Kim, Three-dimensional Solitary Waves in Dispersive Wave Systems, PhD thesis, Massachusets Institute of Technology, Department of Mathematics, Cambridge, MA, 2006.
[17] H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in \(\begin{document}H^s(\mathbb R)\end{document} \), IMRNInternational Mathematics Research Notices, 26 (2003), 1449-1464. · Zbl 1039.35106
[18] F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2015. · Zbl 1310.35002
[19] F. Linares; D. Pilod; J. C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, Siam J. Math. Anal., 46, 1505-1537 (2014) · Zbl 1294.35124 · doi:10.1137/130912001
[20] F. Linares; D. Pilod; J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Analysis, 50, 3172-3209 (2018) · Zbl 1420.35320 · doi:10.1137/17M1145379
[21] L. Molinet; J. C. Saut; N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, Siam J. Math. Anal., 33, 982-988 (2001) · Zbl 0999.35085 · doi:10.1137/S0036141001385307
[22] D. E. Pelinovsky; V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206, 195-202 (1995)
[23] G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4, 527-542 (1991) · Zbl 0732.35038
[24] G. Preciado and F. Soriano, On the Cauchy problem of a two-dimensional Benjamin-Ono equation, arXiv:1503.04290v1 [Math.AP] 14 Mar 2015.
[25] J. C. Saut, Sur quelques gééalisations de l’éuation de Korteweg-de Vries, J. Math. Pures Appl., 58, 21-61 (1979) · Zbl 0449.35083
[26] T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, Regional Conference Series in Mathematics, Number 106, AMS, 2006. · Zbl 1106.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.