×

Generation of class fields by using the Weber function. (English) Zbl 1411.11115

Summary: Let \(K\) be an imaginary quadratic field and \(\mathcal{O}_K\) be its ring of integers. Let \(h_E\) be the Weber function on a certain elliptic curve \(E\) with complex multiplication by \(\mathcal{O}_K\). We show that if \(N (>1)\) is an integer prime to 6, then the function \(h_E\) alone generates the ray class field modulo \(N \mathcal{O}_K\) over \(K\) when evaluated at some \(N\)-torsion point of \(E\), which would be a partial answer to the question mentioned in [K. Ramachandra, Ann. Math. (2) 80, 104–148 (1964; Zbl 0142.29804), p. 105].

MSC:

11R37 Class field theory
11G15 Complex multiplication and moduli of abelian varieties
11G16 Elliptic and modular units

Citations:

Zbl 0142.29804

References:

[1] Cox, D. A., Primes of the Form \(x^2 + n y^2\) Fermat, Class Field, and Complex Multiplication (1989), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0701.11001
[2] Eum, I. S.; Koo, J. K.; Shin, D. H., Ring class invariants over imaginary quadratic fields, Forum Math., 28, 2, 201-217 (2016) · Zbl 1408.11060
[3] Hasse, H., Neue Begründung der Komplexen Multiplikation I, II, J. Reine Angew. Math.. J. Reine Angew. Math., J. Reine Angew. Math., 165, 64-88 (1931) · JFM 57.0204.02
[4] Janusz, G. J., Algebraic Number Fields, Grad. Studies in Math., vol. 7 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0854.11001
[5] Jung, H. Y.; Koo, J. K.; Shin, D. H., On some Fricke families and application to the Lang-Schertz conjecture, Proc. Roy. Soc. Edinburgh Sect. A (2016), in press · Zbl 1403.11048
[6] Koo, J. K.; Shin, D. H.; Yoon, D. S., Ring class fields by smaller generators
[7] Koo, J. K.; Yoon, D. S., Construction of ray class fields by smaller generators and applications, Proc. Roy. Soc. Edinburgh Sect. A (2016), in press
[8] Kubert, D.; Lang, S., Modular Units, Grundlehren der mathematischen Wissenschaften, vol. 244 (1981), Spinger-Verlag: Spinger-Verlag New York-Berlin · Zbl 0492.12002
[9] Lang, S., Elliptic Functions, Grad. Texts in Math., vol. 112 (1987), Spinger-Verlag: Spinger-Verlag New York, with an appendix by J. Tate · Zbl 0615.14018
[10] Ramachandra, K., Some applications of Kronecker’s limit formula, Ann. of Math. (2), 80, 104-148 (1964) · Zbl 0142.29804
[11] Schertz, R., Construction of ray class fields by elliptic units, J. Théor. Nombres Bordeaux, 9, 2, 383-394 (1997) · Zbl 0902.11047
[12] Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions (1971), Iwanami Shoten and Princeton University Press: Iwanami Shoten and Princeton University Press Princeton, NJ · Zbl 0221.10029
[13] Siegel, C. L., Advanced Analytic Number Theory, Tata Institute of Fundamental Research Studies in Mathematics, vol. 9 (1980), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay · Zbl 0478.10001
[14] Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math., vol. 151 (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0911.14015
[15] Silverman, J. H., The Arithmetic of Elliptic Curves, Grad. Texts in Math., vol. 106 (2009), Springer: Springer Dordrecht · Zbl 1194.11005
[16] Sugawara, M., Zur theorie der Komplexen Multiplikation. I, II, J. Reine Angew. Math.. J. Reine Angew. Math., J. Reine Angew. Math., 175, 65-68 (1936) · JFM 62.0168.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.