×

Generation of ray class fields modulo 2, 3, 4 or 6 by using the Weber function. (English) Zbl 1427.11119

Summary: Let \(K\) be an imaginary quadratic field with ring of integers \(\mathcal{O}_K\). Let \(E\) be an elliptic curve with complex multiplication by \(\mathcal{O}_K\), and let \(h_E\) be the Weber function on \(E\). Let \(N \in \{2,\,3,\,4,\,6\}\). We show that \(h_E\) alone when evaluated at a certain \(N\)-torsion point on \(E\) generates the ray class field of \(K\) modulo \(N\mathcal{O}_K\). This would be a partial answer to the question raised by Hasse and Ramachandra.

MSC:

11R37 Class field theory
11G15 Complex multiplication and moduli of abelian varieties
11G16 Elliptic and modular units

References:

[1] A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1966), 204-216. · Zbl 0161.05201
[2] D. A. Cox, Primes of the form x 2+ ny 2, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. · Zbl 0701.11001
[3] M. Deuring, Die Klassenk¨orper der komplexen Multiplikation, Enzyklop¨adie der math ematischen Wissenschaften: Mit Einschluss ihrer Anwendungen, Band I 2, Heft 10, Teil II (Article I 2, 23), B. G. Teubner Verlagsgesellschaft, Stuttgart, 1958.
[4] G. Frei, F. Lemmermeyer, and P. J. Roquette, Emil Artin and Helmut Hasse—the correspondence 1923-1958, Contributions in Mathematical and Computational Sciences, 5, Springer, Heidelberg, 2014. · Zbl 1294.01004
[5] H. Hasse, Neue Begr¨undung der komplexen Multiplikation. Zweiter Teil: Aufbau ohne Benutzung der allgemeinen Klassenk¨orpertheorie, J. Reine Angew. Math. 165 (1931), 64-88. · Zbl 0002.12002
[6] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. · Zbl 0049.16202
[7] G. J. Janusz, Algebraic number fields, second edition, Graduate Studies in Mathematics, 7, American Mathematical Society, Providence, RI, 1996. · Zbl 0854.11001
[8] H. Y. Jung, J. K. Koo, and D. H. Shin, Normal bases of ray class fields over imaginary quadratic fields, Math. Z. 271 (2012), no. 1-2, 109-116. · Zbl 1279.11061
[9] C. H. Kim and J. K. Koo, On the genus of some modular curves of level N , Bull. Austral. Math. Soc. 54 (1996), no. 2, 291-297. · Zbl 0894.11018
[10] , Arithmetic of the modular function j 1,8, Ramanujan J. 4 (2000), no. 3, 317-338. · Zbl 0976.11024
[11] J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177. · Zbl 1228.11057
[12] J. K. Koo, D. H. Shin, and D. S. Yoon, Generation of class fields by using the Weber function, J. Number Theory 167 (2016), 74-87. · Zbl 1411.11115
[13] , On a problem of Hasse and Ramachandra, submitted, https://arxiv.org /abs/1608.06705. 372 H. Y. JUNG, J. K. KOO, AND D. H. SHIN
[14] D. S. Kubert and S. Lang, Modular Units, Grundlehren der Mathematischen Wis senschaften, 244, Springer-Verlag, New York, 1981. · Zbl 0492.12002
[15] S. Lang, Elliptic Functions, second edition, Graduate Texts in Mathematics, 112, Springer-Verlag, New York, 1987. · Zbl 0615.14018
[16] , Algebraic Number Theory, second edition, Graduate Texts in Mathematics, 110, Springer-Verlag, New York, 1994. · Zbl 0811.11001
[17] K. Ramachandra, Some applications of Kronecker’s limit formulas, Ann. of Math. (2) 80 (1964), 104-148. · Zbl 0142.29804
[18] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publica tions of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. · Zbl 0221.10029
[19] J. H. Silverman, The Arithmetic of Elliptic Curves, second edition, Graduate Texts in Mathematics, 106, Springer, Dordrecht, 2009. · Zbl 1194.11005
[20] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27. · Zbl 0148.27802
[21] , On the “gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16-27. · Zbl 0198.37702
[22] P. Stevenhagen, Hilbert’s 12th problem, complex multiplication and Shimura reciprocity, in Class field theory—its centenary and prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001. · Zbl 1097.11535
[23] M. Sugawara, On the so-called Kronecker’s dream in young days, Proc. Phys.-Math. Japan 15 (1933), no. 3, 99-107. · Zbl 0007.21501
[24] , Zur Theorie der komplexen Multiplikation. I, J. Reine Angew. Math. 174 (1936), 189-191. · Zbl 0013.19602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.