×

Local-global compatibility and the action of monodromy on nearby cycles. (English) Zbl 1405.22028

Summary: We strengthen the local-global compatibility of Langlands correspondences for \(\mathrm{GL}_{n}\) in the case when \(n\) is even and \(l\neq p\). Let \(L\) be a CM field, and let \(\Pi\) be a cuspidal automorphic representation of \(\mathrm{GL}_{n}(\mathbb{A}_L)\) which is conjugate self-dual. Assume that \(\Pi_{\infty}\) is cohomological and not “slightly regular,” as defined by Shin. In this case, G. Chenevier and M. Harris [Camb. J. Math. 1, No. 1, 53–73 (2013; Zbl 1310.11062)] constructed an \(l\)-adic Galois representation \(R_{l}(\Pi)\) and proved the local-global compatibility up to semisimplification at primes \(v\) not dividing \(l\). We extend this compatibility by showing that the Frobenius semisimplification of the restriction of \(R_{l}(\Pi)\) to the decomposition group at \(v\) corresponds to the image of \(\Pi_{v}\) via the local Langlands correspondence. We follow the strategy of R. Taylor and T. Yoshida [J. Am. Math. Soc. 20, No. 2, 467–493 (2007; Zbl 1210.11118)], where it was assumed that \(\Pi\) is square-integrable at a finite place. To make the argument work, we study the action of the monodromy operator \(N\) on the complex of nearby cycles on a scheme which is locally étale over a product of strictly semistable schemes and we derive a generalization of the weight spectral sequence in this case. We also prove the Ramanujan-Petersson conjecture for \(\Pi\) as above.

MSC:

22E57 Geometric Langlands program: representation-theoretic aspects
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F80 Galois representations
11R39 Langlands-Weil conjectures, nonabelian class field theory
14G35 Modular and Shimura varieties

References:

[1] J. Arthur, The invariant trace formula, II: Global theory , J. Amer. Math. Soc. 1 (1988), 501-554. · Zbl 0667.10019 · doi:10.2307/1990948
[2] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula , Ann. of Math. Stud. 120 , Princeton Univ. Press, Princeton, 1989. · Zbl 0682.10022
[3] M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas , Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Lecture Notes in Math. 305 , Springer, Berlin, 1973. · Zbl 0234.00007
[4] A. I. Badulescu, Jacquet-Langlands et unitarisabilité , J. Inst. Math. Jussieu 6 (2007), 349-379. · Zbl 1159.22005 · doi:10.1017/S1474748007000035
[5] A. A. Beĭlinson, “On the derived category of perverse sheaves” in \(K\)-theory, Arithmetic and Geometry (Moscow, 1984-1986) , Lecture Notes in Math. 1289 , Springer, Berlin, 1987, 27-41.
[6] A. A. Beĭlinson, J. Bernstein, and P. Deligne, “Faisceaux pervers” in Analyse et topologie sur les espaces singuliers, I (Luminy, 1981) , Astérisque 100 , Soc. Math. France, Paris, 1982, 5-171.
[7] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \(p\)-adic groups, I , Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 441-472. · Zbl 0412.22015
[8] A. Borel, “Automorphic \(L\)-functions” in Automorphic Forms, Representations and \(L\)-functions (Corvallis, Ore., 1977) , Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979, 27-61. · Zbl 0412.10017
[9] G. Chenevier and M. Harris, Construction of automorphic Galois representations, II , preprint, (accessed 24 July 2012). · Zbl 1310.11062
[10] L. Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de \(\operatorname{GL}(n)\) , Publ. Math. Inst. Hautes Études Sci. 73 (1991), 97-145. · Zbl 0739.11020 · doi:10.1007/BF02699257
[11] Clozel, L., Purity reigns supreme , to appear in Int. Math. Res. Not. IMRN, preprint, (accessed 24 July 2012). · Zbl 1082.11028 · doi:10.1155/S1073792804132649
[12] V. G. Drinfeld, Elliptic modules (in Russian), Mat. Sb. (N.S.) 94(136) , no. 4, 594-627; English translation in Math. USSR Sb. 23 (1974), 561-592.
[13] T. Ekedahl, “On the adic formalism” in The Grothendieck Festschrift, Vol. II , Progr. Math. 87 , Birkhäuser, Boston, 1990, 197-218. · Zbl 0821.14010
[14] A. Grothendieck, P. Deligne, and N. Katz, Groupes de monodromie en géométrie algébrique. I , Séminaire de Géométrie Algébrique du Bois-Marie (SGA 7 I), Lecture Notes in Math. 288 , Springer, Berlin, 1972.
[15] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, II , Publ. Math. Inst. Hautes Études Sci. 17 (1963). · Zbl 0122.16102
[16] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, IV , Publ. Math. Inst. Hautes Études Sci. 32 (1967).
[17] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties , with an appendix by V. G. Berkovich, Ann. of Math. Stud. 151 , Princeton Univ. Press, Princeton, 2001. · Zbl 1036.11027
[18] L. Illusie, “Autour du théorème de monodromie locale” in Périodes \(p\)-adiques (Bures-sur-Yvette, 1988) , Astérisque 223 , Soc. Math. France, Paris, 1994, 9-57. · Zbl 0837.14013
[19] L. Illusie, “An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology” in Cohomologies \(p\)-adiques et applications arithmétiques, II , Astérisque 279 , Soc. Math. France, Paris, 2002, 271-322. · Zbl 1052.14005
[20] K. Kato, “Logarithmic structures of Fontaine-Illusie” in Algebraic Analysis, Geometry, and Number Theory (Baltimore, 1988) , Johns Hopkins Univ. Press, Baltimore, 1989. · Zbl 0776.14004
[21] K. Kato and C. Nakayama, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over \(\mathbb{C}\) , Kodai Math. J. 22 (1999), 161-186. · Zbl 0957.14015 · doi:10.2996/kmj/1138044041
[22] N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves , Ann. of Math. Stud. 108 , Princeton Univ. Press, Princeton, 1985. · Zbl 0576.14026
[23] R. E. Kottwitz, On the \(\lambda\)-adic representations associated to some simple Shimura varieties , Invent. Math. 108 (1992), 653-665. · Zbl 0765.22011 · doi:10.1007/BF02100620
[24] R. E. Kottwitz, Points on some Shimura varieties over finite fields , J. Amer. Math. Soc. 5 (1992), 373-444. · Zbl 0796.14014 · doi:10.2307/2152772
[25] K.-W. Lan, Arithmetic compactifications of PEL-type Shimura varieties , Ph.D. dissertation, Harvard University, Cambridge, Mass., 2008. · Zbl 1284.14004
[26] E. Mantovan, On the cohomology of certain PEL-type Shimura varieties , Duke Math. J. 129 (2005), 573-610. · Zbl 1112.11033 · doi:10.1215/S0012-7094-05-12935-0
[27] C. Nakayama, Nearby cycles for log smooth families , Compos. Math. 112 (1998), 45-75. · Zbl 0926.14006 · doi:10.1023/A:1000327225021
[28] A. Ogus, Relatively coherent log structures , preprint, 2009. · Zbl 0757.14014
[29] M. Rapoport and Th. Zink, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik , Invent. Math. 68 (1982), 21-101. · Zbl 0498.14010 · doi:10.1007/BF01394268
[30] R. Reich, Notes on Beilinson’s “How to glue perverse sheaves , ” J. Singul. 1 (2010), 94-115. · Zbl 1291.14034 · doi:10.5427/jsing.2010.1g
[31] M. Saito, Modules de Hodge polarisables , Publ. Res. Inst. Math. Sci. 24 (1988), 849-995. · Zbl 0691.14007 · doi:10.2977/prims/1195173930
[32] T. Saito, Weight spectral sequences and independence of \(l\) , J. Inst. Math. Jussieu 2 (2003), 583-634. · Zbl 1084.14027 · doi:10.1017/S1474748003000173
[33] D. Shelstad, \(L\)-indistinguishability for real groups , Math. Ann. 259 (1982), 385-430. · Zbl 0506.22014 · doi:10.1007/BF01456950
[34] S. W. Shin, Counting points on Igusa varieties , Duke Math. J. 146 (2009), 509-568. · Zbl 1218.11061 · doi:10.1215/00127094-2009-004
[35] S. W. Shin, A stable trace formula for Igusa varieties , J. Inst. Math. Jussieu 9 (2010), 847-895. · Zbl 1206.22011 · doi:10.1017/S1474748010000046
[36] S. W. Shin, Galois representations arising from some compact Shimura varieties , Ann. of Math. (2) 173 (2011), 1645-1741. · Zbl 1269.11053 · doi:10.4007/annals.2011.173.3.9
[37] M. Tadic, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case) , Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 335-382. · Zbl 0614.22005
[38] J. Tate, “Classes d’isogenie des variétés abéliennes sur un corps fini” in Séminaire Bourbaki, 1968/1969 , no. 352, Lecture Notes in Math. 179 , Springer, Berlin, 1971. · Zbl 0212.25702
[39] R. Taylor and T. Yoshida, Compatibility of local and global Langlands correspondences , J. Amer. Math. Soc. 20 (2007), 467-493. · Zbl 1210.11118 · doi:10.1090/S0894-0347-06-00542-X
[40] T. Yoshida, “On non-abelian Lubin-Tate theory via vanishing cycles” in Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo, 2007) , Adv. Stud. Pure Math. 58 , Math. Soc. Japan, Tokyo, 2010, 361-402. · Zbl 1257.11103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.