×

Galois and Cartan cohomology of real groups. (English) Zbl 1410.11036

Let \(G\) be a complex reductive Lie group. A real form of \(G\) is an anti-holomorphic involutive group automorphism \(\sigma:G\to G\); this datum is equivalent to specifying a real algebraic group whose \(\mathbb{C}\)-points are \(G\) and such that \(\sigma\) is induced by complex conjugation. The fixed points, \(G^\sigma\), are then the real points of the given real algebraic group. Call \(\sigma\) a compact real form if \(G^\sigma\) is compact. A Cartan involution for a real form \(\sigma\) is a holomorphic involution \(\theta:G\to G\) such that \(\sigma\theta=\theta\sigma\) and \(\theta\sigma\) is a compact real form. It always exists and is unique up to conjugation by an element of \((G^\sigma)^0\); this is known when \(G\) is connected, and a proof for arbitrary \(G\) is given in the paper.
Let \(\sigma\) be a real form of \(G\) with Cartan involution \(\theta\). The involutions \(\sigma\) and \(\theta\) induce two \(\mathbb{Z}/2\mathbb{Z}\)-actions on \(G\), giving rise to corresponding \(\mathbb{Z}/2\mathbb{Z}\)-cohomology pointed sets denoted \(\mathrm{H}^1(\sigma,G)\) and \(\mathrm{H}^1(\theta,G)\), respectively. The former is the Galois cohomology of the real algebraic group \(G^\sigma\); the authors call the latter set the Cartan cohomology of \(G\) (relative to \(\theta\)).
The authors show that there is a canonical isomorphism of pointed sets \[ \mathrm{H}^1(\sigma,G)\cong \mathrm{H}^1(\theta,G) . \] If \(X\) is a homogeneous \(G\)-space with commuting involutions \(\sigma_X\), \(\theta_X\) compatible with \(\sigma\) and \(\theta\), then the authors also show that there is a canonical bijection \(X^{\sigma_X}/G^\sigma\cong X^{\theta_X}/G^\theta\), provided \(Gx\cap X^{\sigma_X\theta_X}\neq \emptyset\) for all \(x\in X^{\sigma_X}\cup X^{\theta_X}\).
The authors use these results to give elegant proofs to the Kostant-Sekiguchi correspondence, the Matsuki duality and a number of facts concerning Cartan subgroups and the Weyl group of \(G\).
When \(G\) is connected, the authors proceed with associating with every strong real form of \(G\) a central invariant taking values in a group which is canonically isomorphic to \(Z^\sigma/\{z^\sigma z\,|\,z\in Z\}\), with \(Z\) being the center of \(G\). They establish a bijection between \(\mathrm{H}^1(\sigma,G)\) and conjugacy classes of strong real forms of \(G\) with the same central invariant as \(\sigma\), and use this bijection together with the previous results to compute \(\mathrm{H}^1(\sigma,G)\) for \(G\) simple and simply connected.

MSC:

11E72 Galois cohomology of linear algebraic groups
22E46 Semisimple Lie groups and their representations
20G20 Linear algebraic groups over the reals, the complexes, the quaternions

References:

[1] J. Adams, “Guide to the Atlas software: Computational representation theory of real reductive groups” in Representation Theory of Real Reductive Lie Groups, Contemp. Math. 472, Amer. Math. Soc., Providence, 2008, 1-37. · Zbl 1175.22001
[2] J. Adams, D. Barbasch, and D. A. Vogan, Jr., The Langlands Classification and Irreducible Characters for Real Reductive Groups, Progr. Math. 104, Birkhäuser, Boston, 1992. · Zbl 0756.22004
[3] J. Adams and F. du Cloux, Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu 8 (2009), 209-259. · Zbl 1221.22017 · doi:10.1017/S1474748008000352
[4] J. Adams and D. A. Vogan, Jr., \(L\)-groups, projective representations, and the Langlands classification, Amer. J. Math. 114 (1992), 45-138. · Zbl 0760.22013
[5] A. Borel, “Automorphic L-functions” in Automorphic Forms, Representations and \(L\)-Functions (Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, 1979, 27-61. · Zbl 0412.10017
[6] A. Borel, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991. · Zbl 0726.20030
[7] A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111-164. · Zbl 0143.05901
[8] M. Borovoi, Galois cohomology of real reductive groups and real forms of simple Lie algebras (in Russian), Funktsional. Anal. i Prilozhen. 22, no. 2 (1988), 63-63; English translation in Funct. Anal. Appl. 22 (1988), 135-136. · Zbl 0667.22002
[9] M. Borovoi, Galois cohomology of reductive algebraic groups over the field of real numbers, preprint, arXiv:1401.5913v1 [math.GR]. · Zbl 0857.20021
[10] M. Borovoi and D. A. Timashev, Galois cohomology of real semisimple groups, preprint, arXiv:1506.06252v1 [math.GR]. · Zbl 1529.20088
[11] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin, 1990. · Zbl 0705.14001
[12] N. Bourbaki, Elements of Mathematics: Lie Groups and Lie Algebras, Chapters 7-9, Elem. Math. (Berlin), Springer, Berlin, 2005. · Zbl 1139.17002
[13] G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965. · Zbl 0131.02702
[14] T. Kaletha, Rigid inner forms of real and \(p\)-adic groups, Ann. of Math. (2) 184 (2016), 559-632. · Zbl 1393.22009
[15] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloq. Publ. 44, Amer. Math. Soc., Providence, 1998. · Zbl 0955.16001
[16] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809. · Zbl 0224.22013 · doi:10.2307/2373470
[17] R. E. Kottwitz, Stable trace formula: Cuspidal tempered terms, Duke Math. J. 51 (1984), 611-650. · Zbl 0576.22020 · doi:10.1215/S0012-7094-84-05129-9
[18] R. E. Kottwitz, Stable trace formula: Elliptic singular terms, Math. Ann. 275 (1986), 365-399. · Zbl 0577.10028 · doi:10.1007/BF01458611
[19] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357. · Zbl 0396.53025 · doi:10.2969/jmsj/03120331
[20] G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44-55. · Zbl 0065.01404 · doi:10.2307/2007099
[21] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure Appl. Math. 139, Academic Press, Boston, 1994. · Zbl 0841.20046
[22] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), 127-138. · Zbl 0627.22008 · doi:10.2969/jmsj/03910127
[23] J.-P. Serre, Galois Cohomology, corrected reprint of 1997 English edition, Springer Monogr. Math., Springer, Berlin, 2002.
[24] T. A. Springer, Linear Algebraic Groups, 2nd ed., Progr. Math. 9, Birkhäuser, Boston, 1998. · Zbl 0927.20024
[25] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc. 80, Amer. Math. Soc., Providence, 1968. · Zbl 0164.02902
[26] D. A. Vogan, Jr., Representations of Real Reductive Lie Groups, Progr. Math. 15, Birkhäuser, Boston, 1981. · Zbl 0469.22012
[27] D. A. Vogan, Jr., Irreducible characters of semisimple Lie groups, IV: Character-multiplicity duality, Duke Math. J. 49 (1982), 943-1073. · Zbl 0536.22022 · doi:10.1215/S0012-7094-82-04946-8
[28] D. A. Vogan, Jr., “The local Langlands conjecture” in Representation Theory of Groups and Algebras, Contemp. Math. 145, Amer. Math. Soc., Providence, 1993, 305-379. · Zbl 0802.22005
[29] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, II, Grundlehren Math. Wiss. 189, Springer, New York, 1972. · Zbl 0265.22021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.