×

Nonlocal solutions of parabolic equations with strongly elliptic differential operators. (English) Zbl 1409.35119

Summary: The paper deals with second order parabolic equations on bounded domains with Dirichlet conditions in arbitrary Euclidean spaces. Their interest comes from being models for describing reaction-diffusion processes in several frameworks. A linear diffusion term in divergence form is included which generates a strongly elliptic differential operator. A further linear part, of integral type, is present which accounts of nonlocal diffusion behaviours. The main result provides a unifying method for studying the existence and localization of solutions satisfying nonlocal associated boundary conditions. The Cauchy multipoint and the mean value conditions are included in this investigation. The problem is transformed into its abstract setting and the proofs are based on the homotopic invariance of the Leray-Schauder topological degree. A bounding function (i.e. Lyapunov-like function) theory is developed, which is new in this infinite dimensional context. It allows that the associated vector fields have no fixed points on the boundary of their domains and then it makes possible the use of a degree argument.

MSC:

35K58 Semilinear parabolic equations
35A16 Topological and monotonicity methods applied to PDEs
35K15 Initial value problems for second-order parabolic equations
35R09 Integro-partial differential equations

References:

[1] Al-Omair, R. A.; Ibrahim, A. G., Existence of mild solutions of a semilinear evolution differential inclusions with nonlocal conditions, Electron. J. Differential Equations, 42 (2009), 11 pp. · Zbl 1175.34077
[2] Andres, J.; Malaguti, L.; Taddei, V., On boundary value problems in Banach spaces, Dynam. Systems Appl., 18, 275-302 (2009) · Zbl 1195.34091
[3] Benedetti, I.; Loi, N. V.; Taddei, V., An approximation solvability method for nonlocal semilinear differential problems in Banach spaces, Discrete Contin. Dyn. Syst., 37, 2977-2998 (2017) · Zbl 1357.35272
[4] Benedetti, I.; Taddei, V.; Väth, M., Evolution problems with nonlinear nonlocal boundary conditions, J. Dynam. Differential Equations, 25, 477-503 (2013) · Zbl 1281.34108
[5] Boucherif, A.; Precup, R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 16, 507-516 (2007) · Zbl 1154.34027
[6] Byszewski, L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162, 494-505 (1991) · Zbl 0748.34040
[7] Cardinali, T.; Rubbioni, P., Aronszajn-Hukuhara type theorem for semilinear differential inclusions with nonlocal conditions, Electron. J. Qual. Theory Differ. Equ., 45 (2015), 12 pp. · Zbl 1349.34241
[8] Chabrowski, J., On nonlocal problems for parabolic equations, Nagoya Math. J., 93, 109-131 (1984) · Zbl 0506.35048
[9] Ćwiszewski, A.; Kokocki, P., Krasnosel’skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22, 605-628 (2008) · Zbl 1165.47056
[10] Deng, K., Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179, 630-637 (1993) · Zbl 0798.35076
[11] Di Benedetto, E.; Gianazza, U.; Vespri, V., Harnack’s Inequality for Degenerate and Singular Parabolic Equations, Springer Monogr. Math. (2012), Springer: Springer New York
[12] Diestel, J., Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math., vol. 485 (1975), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0307.46009
[13] Gaines, R. E.; Mawhin, J. L., Ordinary differential equations with nonlinear boundary conditions, J. Differential Equations, 26, 200-222 (1977) · Zbl 0326.34021
[14] Gaines, R. E.; Mawhin, J. L., Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math., vol. 568 (1977), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0339.47031
[15] Gilding, B. H.; Kersner, R., Travelling Waves in Nonlinear Diffusion-Convection-Reaction (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1073.35002
[16] Hu, S.; Papageorgiou, N., Handbook of Multivalued Analysis Vol. I: Theory (1997), Springer US · Zbl 0887.47001
[17] Infante, G.; Maciejewski, M., Multiple positive solutions of parabolic systems with nonlinear, nonlocal initial conditions, J. Lond. Math. Soc. (2), 94, 859-882 (2016) · Zbl 1366.35070
[18] Jackson, D., Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl., 172, 256-265 (1993) · Zbl 0814.35060
[19] Kamenskii, M.; Obukhovskii, V.; Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space (2001), W. de Gruyter: W. de Gruyter Berlin · Zbl 0988.34001
[20] Ke, T. D.; Obukhovskii, V.; Wong, N.; Yao, J., On semilinear integro-differential equations with nonlocal conditions in Banach spaces, Abstr. Appl. Anal., Article 137576 pp. (2012), 26 pp. · Zbl 1244.34082
[21] Kokocki, P., Krasnosel’skii type formula and translation along trajectories method on the scale of fractional spaces, Commun. Pure Appl. Anal., 14, 2315-2334 (2015) · Zbl 1352.47043
[22] Krasnosel’skii, M. A.; Zabreiko, P. P., Geometrical Methods of Nonlinear Analysis (1984), Izdat. Nauka: Izdat. Nauka Moscow: Springer-Verlag: Izdat. Nauka: Izdat. Nauka Moscow: Springer-Verlag Berlin, English translation · Zbl 0546.47030
[23] Leray, J.; Schauder, J., Topologie et équations fonctionnelles, Ann. Sci. Éc. Norm. Supér., 51, 45-78 (1934) · JFM 60.0322.02
[24] Liang, J.; Liu, J.; Xiao, T. J., Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal., 57, 183-189 (2004) · Zbl 1083.34045
[25] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 16 (1995), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0816.35001
[26] Mawhin, J. L.; Thompson, H. B., Periodic or bounded solutions of Carathéodory systems of ordinary differential equations, J. Dynam. Differential Equations, 15, 327-334 (2003) · Zbl 1055.34035
[27] Meyer, J. C.; Needham, D. J., The Cauchy Problem for non-Lipschitz Semi-Linear Parabolic Partial Differential Equations, London Math. Soc. Lecture Note Ser., vol. 419 (2015), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1349.35003
[28] Pao, C. V., Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195, 702-718 (1995) · Zbl 0851.35063
[29] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0516.47023
[30] Taddei, V., Bound sets for Floquet boundary value problems: the nonsmooth case, Discrete Contin. Dyn. Syst., 6, 459-473 (2000) · Zbl 1025.34013
[31] Viorel, A., Nonlocal Cauchy problems close to an asymptotically stable equilibrium point, J. Math. Anal. Appl., 433, 1736-1742 (2016) · Zbl 1330.34100
[32] Vrabie, I. I., Compactness Methods for Nonlinear Evolutions (1990), Longman House, Burn Mill: Longman House, Burn Mill Harlow · Zbl 0721.47050
[33] Vrabie, I. I., \(C_0\)-Semigroups and Applications, North-Holl. Math. Stud., vol. 191 (2003), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam · Zbl 1119.47044
[34] Xue, X., Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces, Nonlinear Anal., 70, 2593-2601 (2009) · Zbl 1176.34071
[35] Yagi, A., Abstract Parabolic Evolution Equations and Their Applications, Springer Monogr. Math. (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1190.35004
[36] Zanolin, F., Bound sets, periodic solutions and flow-invariant for ordinary differential equations in \(R^n\): some remarks, Rend. Istit. Mat. Univ. Trieste, 19, 76-92 (1987) · Zbl 0651.34049
[37] Zhu, L.; Li, G., Existence results of semilinear differential equations with nonlocal initial conditions in Banach spaces, Nonlinear Anal., 74, 5133-5140 (2011) · Zbl 1227.34060
[38] Zhu, T.; Song, C.; Li, G., Existence of mild solutions for abstract semilinear evolution equations in Banach spaces, Nonlinear Anal., 75, 177-181 (2012) · Zbl 1235.34174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.