×

An approximation solvability method for nonlocal semilinear differential problems in Banach spaces. (English) Zbl 1357.35272

Summary: A new approximation solvability method is developed for the study of semilinear differential equations with nonlocal conditions without the compactness of the semigroup and of the nonlinearity. The method is based on the Yosida approximations of the generator of \(C_0-\)semigroup, the continuation principle, and the weak topology. It is shown how the abstract result can be applied to study the reaction-diffusion models.

MSC:

35R09 Integro-partial differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
47H11 Degree theory for nonlinear operators
Full Text: DOI

References:

[1] F. Achleitner, On bounded positive stationary solutions for a nonlocal Fisher-KPP equation,, Nonlin. Anal.: TMA, 112, 15 (2015) · Zbl 1303.35006 · doi:10.1016/j.na.2014.09.004
[2] R. R. Akhmerov, <em>Measures of Noncompactness and Condensing Operators</em>,, Birkhäuser (1992) · Zbl 0748.47045 · doi:10.1007/978-3-0348-5727-7
[3] J. Andres, <em>Topological Fixed Point Principles for Boundary Value Problems</em>,, Kluwer Academic Publishers (2003) · Zbl 1029.55002 · doi:10.1007/978-94-017-0407-6
[4] R. B. Banks, <em>Growth and Diffusion Phenomena: Mathematical Frameworks and Applications</em>,, Texts in Applied Mathematics 14 (1994) · Zbl 0788.92001 · doi:10.1007/978-3-662-03052-3
[5] V. Barbu, <em>Nonlinear Semigroups and Differential Equations in Banach Spaces</em>,, Noordhoff International Publishing (1976) · Zbl 0328.47035
[6] I. Benedetti, An approximation solvability method for nonlocal differential problems in Hilbert spaces,, Commun. Contemp. Math. (2016) · Zbl 1378.34083 · doi:10.1142/S0219199716500024
[7] I. Benedetti, Nonlocal diffusion second order partial differential equations,, J. Diff. Equ., 262, 1499 (2017) · Zbl 1353.35297 · doi:10.1016/j.jde.2016.10.019
[8] I. Benedetti, Nonlocal semilinear evolution equations without strong compactness: Theory and applications,, Bound. Val. Probl., 2013 (2013) · Zbl 1288.34056 · doi:10.1186/1687-2770-2013-60
[9] I. Benedetti, Two-points b.v.p. for multivalued equations with weakly regular r.h.s.,, Nonlin. Anal.: TMA., 74, 3657 (2011) · Zbl 1221.34161 · doi:10.1016/j.na.2011.02.046
[10] I. Benedetti, Semilinear differential inclusions via weak topologies,, J. Math. Anal. Appl., 368, 90 (2010) · Zbl 1198.34109 · doi:10.1016/j.jmaa.2010.03.002
[11] H. Berestycki, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22, 2813 (2009) · Zbl 1195.35088 · doi:10.1088/0951-7715/22/12/002
[12] S. Bochner, Linear functionals on certain spaces of abstractly-valued functions,, Ann. of Math. (2), 39, 913 (1938) · JFM 64.0383.01 · doi:10.2307/1968472
[13] F. E. Browder, J-monotone nonlinear operators in Banach spaces,, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math., 28, 412 (1966) · Zbl 0148.13602
[14] F. E. Browder, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces,, J. Funct. Anal., 3, 217 (1969) · Zbl 0177.42702 · doi:10.1016/0022-1236(69)90041-X
[15] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem,, J. Math. Anal. Appl., 162, 494 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[16] I. Ekland, <em>Convex Analysis and Variational Problems</em>,, North Holland (1979) · doi:10.1137/1.9781611971088
[17] M. Furi, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals,, Ann. Polon. Math., 47, 331 (1987) · Zbl 0656.47052
[18] M. I. Kamenskii, <em>Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces</em>,, Walter de Gruyter (2001) · Zbl 0988.34001 · doi:10.1515/9783110870893
[19] I. Korobenko, A logistic model with a carrying capacity driven diffusion,, Canad. Appl. Math. Quarterly, 17, 85 (2009) · Zbl 1298.35232
[20] N. Van Loi, Method of guiding functions for differential inclusions in a hilbert space,, Differen. Urav., 46, 1433 (2010) · Zbl 1232.34089 · doi:10.1134/S0012266110100071
[21] Y. Mir, Linear and logistic models with time dependent coefficients,, Elect. J. Diff. Equ., 18 (2016) · Zbl 1334.34102
[22] N. Papageorgiou, Existence of solutions for boundary value problems of semilinear evolution inclusions,, Indian J. Pure Appl. Math, 23, 477 (1992) · Zbl 0785.35058
[23] W. V. Petryshyn, Using degree theory for densely defined \(A-\) proper maps in the solvability of semilinear equations with unbounded and noninvertible linear part,, Nonlin. Anal.: TMA., 4, 259 (1980) · Zbl 0444.47046 · doi:10.1016/0362-546X(80)90053-X
[24] L. Schwartz, <em>Cours d’Analyse</em>,, \(2^{nd}\) edition (1981)
[25] I. Singer, <em>Bases in Banach Spaces I</em>,, Springer Verlag (1970) · Zbl 0198.16601
[26] I. I. Vrabie, <em>\( C_0\)-Semigroups and Applications</em>,, North-Holland Mathematics Studies 191 (2003) · Zbl 1119.47044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.