×

Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems. (English. Russian original) Zbl 1408.37098

Sb. Math. 209, No. 12, 1690-1727 (2018); translation from Mat. Sb. 209, No. 12, 17-56 (2018).
Summary: We introduce a new class of billiards – billiard books, which are integrable Hamiltonian systems. It turns out that for any nondegenerate three-dimensional bifurcation (3-atom), a billiard book can be algorithmically constructed in which such a bifurcation appears. Consequently, any integrable Hamiltonian nondegenerate dynamical system with two degrees of freedom can be modelled in some neighbourhood of a critical leaf of the Liouville foliation in the iso-energy 3-manifold by a billiard.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37G10 Bifurcations of singular points in dynamical systems
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
70E40 Integrable cases of motion in rigid body dynamics
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
Full Text: DOI

References:

[1] G. D. Birkhoff 1927 Dynamical systems Amer. Math. Soc. Colloq. Publ. 9 Amer. Math. Soc., New York viii+295 pp. · JFM 53.0732.01
[2] V. V. Kozlov and D. V. Treshchev 1991 Billiards. A genetic introduction to the dynamics of systems with impacts Moscow Univ., Moscow 168 pp. · Zbl 0751.70009 · doi:10.1090/mmono/089
[3] English transl. in V. V. Kozlov and D. V. Treshchev 1991 Transl. Math. Monogr. 89 Amer. Math. Soc., Providence, RI viii+171 pp. · Zbl 0729.34027
[4] V. Dragović and M. Radnović 2009 Bifurcations of Liouville tori in elliptical billiards Regul. Chaotic Dyn.14 4-5 479-494 · Zbl 1229.37065 · doi:10.1134/S1560354709040054
[5] V. Dragović and M. Radnović 2011 Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics Front. Math. Birkhäuser/Springer Basel AG, Basel viii+293 pp. · Zbl 1225.37001 · doi:10.1007/978-3-0348-0015-0
[6] V. V. Fokicheva 2012 Description of singularities for system “billiard in an ellipse” Vestnik Moskov. Univ. Ser. 1 Mat. Mekh. 5 31-34 · Zbl 1269.37027
[7] English transl. in V. V. Fokicheva 2012 Moscow Univ. Math. Bull.67 5-6 217-220 · Zbl 1269.37027 · doi:10.3103/S0027132212050063
[8] V. V. Fokicheva 2014 Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas Vestnik Moskov. Univ. Ser. 1 Mat. Mekh. 4 18-27 · Zbl 1315.37032
[9] English transl. in V. V. Fokicheva 2014 Moscow Univ. Math. Bull.69 4 148-158 · Zbl 1315.37032 · doi:10.3103/S0027132214040020
[10] V. V. Fokicheva 2015 A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics Mat. Sb.206 10 127-176 · Zbl 1357.37062 · doi:10.4213/sm8506
[11] English transl. in V. V. Fokicheva 2015 Sb. Math.206 10 1463-1507 · Zbl 1357.37062 · doi:10.1070/SM2015v206n10ABEH004502
[12] A. V. Bolsinov and A. T. Fomenko 1999 Integrable Hamiltonian systems. Geometry, topology, classification 1, 2 Publ. house “Udmurt Univ.”, Izhevsk 444 p., 447 pp. · Zbl 1053.37518
[13] English transl. A. V. Bolsinov and A. T. Fomenko 2004 Integrable Hamiltonian systems. Geometry, topology, classification Chapman & Hall/CRC, Boca Raton, FL xvi+730 pp. · doi:10.1201/9780203643426
[14] A. T. Fomenko 1989 The symplectic topology of completely integrable Hamiltonian systems Uspekhi Mat. Nauk44 1(265) 145-173 · Zbl 0677.58023
[15] English transl. in A. T. Fomenko 1989 Russian Math. Surveys44 1 181-219 · Zbl 0694.58012 · doi:10.1070/RM1989v044n01ABEH002006
[16] A. T. Fomenko and H. Zieschang 1990 A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom Izv. Akad. Nauk SSSR Ser. Mat.54 3 546-575 · Zbl 0705.58023
[17] English transl. in A. T. Fomenko and H. Zieschang 1991 Math. USSR-Izv.36 3 567-596 · Zbl 0723.58024 · doi:10.1070/IM1991v036n03ABEH002035
[18] E. A. Kudryavtseva, I. M. Nikonov and A. T. Fomenko 2008 Maximally symmetric cell decompositions of surfaces and their coverings Mat. Sb.199 9 3-96 · Zbl 1163.37018 · doi:10.4213/sm4529
[19] English transl. in E. A. Kudryavtseva, I. M. Nikonov and A. T. Fomenko 2008 Sb. Math.199 9 1263-1353 · Zbl 1163.37018 · doi:10.1070/SM2008v199n09ABEH003962
[20] E. A. Kudryavtseva and A. T. Fomenko 2012 Symmetries groups of nice Morse functions on surfaces Dokl. Ross. Akad. Nauk446 6 615-617 · Zbl 1295.58013
[21] English transl. in E. A. Kudryavtseva and A. T. Fomenko 2012 Dokl. Math.86 2 691-693 · Zbl 1295.58013 · doi:10.1134/S1064562412050353
[22] A. V. Bolsinov, S. V. Matveev and A. T. Fomenko 1990 Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity Uspekhi Mat. Nauk45 2(272) 49-77 · Zbl 0696.58019
[23] English transl. in A. V. Bolsinov, S. V. Matveev and A. T. Fomenko 1990 Russian Math. Surveys45 2 59-94 · Zbl 0705.58025 · doi:10.1070/RM1990v045n02ABEH002344
[24] A. T. Fomenko 1988 Symplectic geometry. Methods and Applications Moscow Univ., Moscow 414 pp. · Zbl 0751.53002
[25] English transl. of 2nd ed. in A. T. Fomenko 1995 Adv. Stud. Contemp. Math. 5 Gordon and Breach, Luxembourg xvi+467 pp. · Zbl 0873.58031
[26] A. T. Fomenko 1996 Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a heavy rigid body Zapis. Nauch. Sem. POMI235 104-183 · Zbl 0947.37037
[27] A. T. Fomenko 1999 J. Math. Sci. (N. Y.)94 4 1512-1557 · Zbl 0947.37037 · doi:10.1007/BF02365200
[28] A. V. Bolsinov, P. H. Richter and A. T. Fomenko 2000 The method of loop molecules and the topology of the Kovalevskaya top Mat. Sb.191 2 3-42 · Zbl 0983.37068 · doi:10.4213/sm451
[29] English transl. in A. V. Bolsinov, P. H. Richter and A. T. Fomenko 2000 Sb. Math.191 2 151-188 · Zbl 0983.37068 · doi:10.1070/sm2000v191n02ABEH000451
[30] A. T. Fomenko and A. Yu. Konyaev 2012 New approach to symmetries and singularities in integrable Hamiltonian systems Topology Appl.159 7 1964-1975 · Zbl 1248.37050 · doi:10.1016/j.topol.2011.11.056
[31] A. A. Oshemkov 2010 Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems Mat. Sb.201 8 63-102 · Zbl 1205.37072 · doi:10.4213/sm7654
[32] English transl. in A. A. Oshemkov 2010 Sb. Math.201 8 1153-1191 · Zbl 1205.37072 · doi:10.1070/SM2010v201n08ABEH004108
[33] A. A. Oshemkov 2010 The topology of the set of singularities for an integrable Hamiltonian system Dokl. Ross. Akad. Nauk434 5 587-590 · Zbl 1209.53067
[34] English transl. in A. A. Oshemkov 2010 Dokl. Math.82 2 777-779 · Zbl 1209.53067 · doi:10.1134/S106456241005025X
[35] A. T. Fomenko and A. Konyaev 2014 Algebra and geometry through Hamiltonian systems Continuous and distributed systems. Theory and applications Solid Mech. Appl. 211 Springer, Cham 3-21 · Zbl 1362.70023 · doi:10.1007/978-3-319-03146-0_1
[36] A. T. Fomenko and S. S. Nikolaenko 2015 The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid J. Geom. Phys.87 115-133 · Zbl 1358.37097 · doi:10.1016/j.geomphys.2014.09.007
[37] V. V. Fokicheva 2014 Classification of billiard motions in domains bounded by confocal parabolas Mat. Sb.205 8 139-160 · Zbl 1319.37038 · doi:10.4213/sm8359
[38] English transl. in V. V. Fokicheva 2014 Sb. Math.205 8 1201-1221 · Zbl 1319.37038 · doi:10.1070/SM2014v205n08ABEH004415
[39] V. V. Fokicheva and A. T. Fomenko 2015 Integrable billiards model important integrable cases of rigid body dynamics Dokl. Ross. Akad. Nauk465 2 150-153 · Zbl 1335.37040 · doi:10.7868/S0869565215320055
[40] English transl. in V. V. Fokicheva and A. T. Fomenko 2015 Dokl. Math.92 3 682-684 · Zbl 1335.37040 · doi:10.1134/S1064562415060095
[41] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko 2017 Integrable topological billiards and equivalent dynamical systems Izv. Ross. Akad. Nauk Ser. Mat.81 4 20-67 · Zbl 1380.37078 · doi:10.4213/im8602
[42] English transl. in V. V. Vedyushkina (Fokicheva) and A. T. Fomenko 2017 Izv. Math.81 4 688-733 · Zbl 1380.37078 · doi:10.1070/IM8602
[43] C. G. J. Jacobi 1884 Vorlesungen über Dynamik Gesammelte Werke G. Reimer, Berlin Supplementband, 2. rev. Ausg., viii+300 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.