Skip to main content
Log in

Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a heavy rigid body

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Physical and mechanical systems with four-dimensional phase space are considered. The classification of nondegenerate integral systems is studied. A “physical zone,’ i.e., the systems connected with real physical applications, is determined. Bibliography: 27 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Fomenko, “Qualitative geometric theory of integrable systems. Classification of isoenergy surfaces and bifurcation of Liouville tori at the critical energy values,”Lect. Notes Math.,1334, 221–245 (1988).

    MATH  MathSciNet  Google Scholar 

  2. S. V. Matveev and A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds,”Usp. Mat. Nauk,43, No. 1, 5–22 (1988).

    MathSciNet  Google Scholar 

  3. A. T. Fomenko and H. Zieschang, “On typical topological properties of integrable Hamiltonian systems,”Izv. AN SSSR,52, No. 2, 378–407 (1988).

    MathSciNet  Google Scholar 

  4. A. T. Fomenko, “Topological invariants of Hamiltonian systems completely integrable in the sense of Liouville,”Func. Anal. Appl.,22, No. 4, 38–51 (1988).

    MATH  MathSciNet  Google Scholar 

  5. A. T. Fomenko, “Integrability and nonintegrability in geometry and mechanics. (Monograph),”Kluwer Acad. Publ., 1–343 (1988).

  6. A. V. Bolsinov, S. V. Matveev, and A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. The list of all systems with low complexity,”Usp. Mat. Nauk,45, No. 2, 49–77 (1990).

    MathSciNet  Google Scholar 

  7. A. T. Fomenko and H. Zieschang, “Topological invariant and criteria of equivalence of integrable Hamiltonian systems with two degrees of freedom,”Izv. AN SSSR,54, No. 3, 546–575 (1990).

    MathSciNet  Google Scholar 

  8. A. T. Fomenko and T. Z. Nguen, “Topological classification of integrable Hamiltonians on isoenergy three-dimensional sphere,”Usp. Mat. Nauk,45, No. 6 91–111 (1990).

    Google Scholar 

  9. A. T. Fomenko, “Topological classification of all Hamiltonian differential equations of general type with two degrees of freedom,” in:The Geometry of Hamiltonian Systems. Proceedings of a Workshop Held June 5–16, 1989, Springer-Verlag, New York (1991), pp. 131–339.

    Google Scholar 

  10. A. A. Oshemkov, “Topology of isoenergy surfaces and bifurcation diagrams of integrable cases of dynamic of the rigid body on so (4),”Usp. Mat. Nauk,42, No. 6, 199–200 (1987).

    MATH  MathSciNet  Google Scholar 

  11. A. T. Fomenko, “Topological classification of integrable Hamiltonian systems,”Am. Math. Soc. Adv. Sov. Math.,6, 297–306 (1991).

    Google Scholar 

  12. T. Z. Nguen, “On the property of general position of simple Bott integrals,”Usp. Mat. Nauk.,45, No. 4 161–162 (1990).

    Google Scholar 

  13. A. A. Oshemkov, “Fomenko invariants for the mail integrable cases of the rigid body motion equations,” in:Topological Classification of Integrable Hamiltonian Systems. Am. Math. Soc. Adv. Sov. Math., vol. 6, 1991, pp. 67–146.

  14. A. V. Bolsinov, “Methods for calculation of the Fomenko-Zieschang invariant,” in:Topological Classification of Integrable Hamiltonian Systems. Am. Math. Soc. Adv. Sov. Math., vol. 6, 1991, pp. 147–184.

  15. E. N. Selivanova, “Topological classification of integrable Bott geodesic flows on two-dimensional torus,” in:Topological Classification of Integrable Hamiltonian Systems. Am. Math. Soc. Adv. Sov. Math., vol. 6, 1991, pp. 209–228.

  16. T. Z. Nguen, “On the complexity of integrable Hamiltonian systems on three-dimensional isoenergy submanifolds,”Topological Classification of Integrable Hamiltonian Systems Am. Math. Soc. Adv. Sov. Math.,6, 229–256 (1991).

    Google Scholar 

  17. V. V. Kalashnikov (Jr.), “Description of the structure of Fomenko invariant on the boundary and insideQ-domains. Estimates of their number on the lower boundary for the manifoldsS 3,RP 3,S 1×S 2, andT 2,”Topological Classification of Integrable Hamiltonian Systems, Am. Math. Soc. Adv. Sov. Math.,6, 297–306 (1991).

    MATH  MathSciNet  Google Scholar 

  18. S. B. Katok, “Bifurcation sets and integral manifolds in the problem of rigid body motion,”Usp. Mat. Nauk,27, No. 2 126–132 (1972).

    MATH  MathSciNet  Google Scholar 

  19. M. P. Kharlamov,Topological Analysis of Classical Integrable Systems in Rigid Body Dynamics, Leningrad Univ. Press. (1988).

  20. A. Iacob, “Invariant manifolds in the motion of a rigid body about a fixed point,”Rev. Roum. Math. Pur. Appl.,16, No. 10 (1971).

    Google Scholar 

  21. R. Cushman and H. Knorrer, “The energy momentum mapping of the Lagrange top,”Lect. Notes Math.,1139 (1984).

  22. Ja. V. Tatarinov, “The portraits of classical integrals in the problem of a rigid body motion about the fixed point,”Vest. MGU.,6, 99–105 (1974).

    MATH  MathSciNet  Google Scholar 

  23. T. Z. Nguen and L. S. Polyakova, “A topological classification of integrable geodesic flows on the twodimensional sphere with quadratic in momenta additional integral,”J. Nonl. Sci.,6 (1992).

  24. N. M. Ercolani and D. M. McLaughlin, “Toward a topological classification of integrable PRE's,” in:Geometry of Hamiltonian Systems. Proc. of a Workshop, 1989, Berkeley, MSRI. Springer-Verlag (1991).

  25. I. Stewart, “Lowering the volume,”Nature,338, 375–376 (1980).

    Google Scholar 

  26. M. L. Byalyi, “On polynomial in momenta first integrals for mechanical systems on two-dimensional torus,”Func. Anal. Its. Appl.,21, No. 4, 64–65 (1987).

    MathSciNet  Google Scholar 

  27. V. V. Kozlov and D. V. Tretschev, “On integrability of Hamiltonian systems with torical configuration space,”Mat. Sb.,135 (177), No. 1, 119–138 (1988).

    Google Scholar 

Download references

Authors

Additional information

Published inZapiski Nauchnykh Seminarov POMI, Vol. 235, 1996, pp. 104–183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomenko, A.T. Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a heavy rigid body. J Math Sci 94, 1512–1557 (1999). https://doi.org/10.1007/BF02365200

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365200

Keywords

Navigation