×

Existence and uniqueness of monotone nodal solutions of a semilinear Neumann problem. (English) Zbl 1408.34028

Summary: In this paper, we study monotone radially symmetric solutions of semilinear equations with Allen-Cahn type nonlinearities by the bifurcation method. Under suitable conditions imposed on the nonlinearities, we show that the structure of the monotone nodal solutions consists of a continuous U-shaped curve bifurcating from the trivial solution at the third eigenvalue of the Laplacian. The upper branch consists of a decreasing solution and the lower branch consists of an increasing solution. In particular, we show that the following equation \[ \Delta u + \lambda(u - u | u |^{p - 1}) = 0 \text{ in } B,\, \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial B \] has exactly two monotone radial nodal solutions, one is decreasing and the other is increasing. Here \(B\) is the unit ball in \(\mathbb{R}^n\), \(p > 1\) and \(\lambda > 0\).

MSC:

34B09 Boundary eigenvalue problems for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
35J15 Second-order elliptic equations
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
Full Text: DOI

References:

[1] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 4, 313-345 (1983) · Zbl 0533.35029
[2] Bonheure, D.; Noris, B.; Weth, T., Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 4, 573-588 (2012) · Zbl 1248.35079
[3] Bonheure, D.; Serra, E., Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth, NoDEA Nonlinear Differential Equations Appl., 18, 2, 217-235 (2011) · Zbl 1216.35048
[4] Bonheure, D.; Serra, E.; Tilli, P., Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal., 265, 3, 375-398 (2013) · Zbl 1285.35030
[5] Casten, R. G.; Holland, C. J., Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27, 2, 266-273 (1978) · Zbl 0338.35055
[6] Chern, J. L.; Lin, C. S., The symmetry of least-energy solutions for semilinear elliptic equations, J. Differential Equations, 187, 2, 240-268 (2003) · Zbl 1247.35038
[7] Clément, P.; Sweers, G., Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 14, 1, 97-121 (1987) · Zbl 0662.35045
[8] Coffman, C. V., Uniqueness of the ground state solution for \(\Delta u - u + u^3 = 0\) and a variational characterization of other solutions, Arch. Ration. Mech. Anal., 46, 81-95 (1972) · Zbl 0249.35029
[9] Cortázar, C.; Elgueta, M.; Felmer, P., Uniqueness of positive solutions of \(\Delta u + f(u) = 0\) in \(R^N, N \geq 3\), Arch. Ration. Mech. Anal., 142, 2, 127-141 (1998) · Zbl 0912.35059
[10] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[11] Dancer, E., On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, Proc. Lond. Math. Soc. (3), 53, 3, 429-452 (1986) · Zbl 0572.35040
[12] Ding, W.; Ni, W. M., On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Ration. Mech. Anal., 91, 4, 283-308 (1986) · Zbl 0616.35029
[13] Franchi, B.; Lanconelli, E.; Serrin, J., Existence and uniqueness of nonnegative solutions of quasilinear equations in \(R^n\), Adv. Math., 118, 2, 177-243 (1996) · Zbl 0853.35035
[14] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 3, 209-243 (1979) · Zbl 0425.35020
[15] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in Rn, (Mathematical Analysis and Applications, Part A. Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a (1981), Academic Press: Academic Press New York-London), 369-402 · Zbl 0469.35052
[16] Jang, J., Uniqueness of positive radial solutions of \(\Delta u + f(u) = 0\) in \(R^N, N \geq 2\), Nonlinear Anal., 73, 7, 2189-2198 (2010) · Zbl 1209.34030
[17] Korman, P., Global Solution Curves for Semilinear Elliptic Equations (2012), World Scientific Publishing Co. Pvt. Ltd.: World Scientific Publishing Co. Pvt. Ltd. Hackensack, NJ · Zbl 1251.34001
[18] Kwong, M. K., Uniqueness of positive solutions of \(\Delta u - u + u^p = 0\) in \(R^n\), Arch. Ration. Mech. Anal., 105, 3, 243-266 (1989) · Zbl 0676.35032
[19] Kwong, M. K.; Zhang, L. Q., Uniqueness of the positive solution of \(\Delta u + f(u) = 0\) in an annulus, Differential Integral Equations, 4, 3, 583-599 (1991) · Zbl 0724.34023
[20] Li, Y.; Ni, W. M., Radial symmetry of positive solutions of nonlinear elliptic equations in \(R^n\), Comm. Partial Differential Equations, 18, 5-6, 1043-1054 (1993) · Zbl 0788.35042
[21] Lin, C. S., Locating the peaks of solutions via the maximum principle. I. The Neumann problem, Comm. Pure Appl. Math., 54, 9, 1065-1095 (2001) · Zbl 1035.35039
[22] Lin, C. S.; Ni, W. M., On the diffusion coefficient of a semilinear Neumann problem, (Calculus of Variations and Partial Differential Equations (Trento, 1986). Calculus of Variations and Partial Differential Equations (Trento, 1986), Lecture Notes in Math., vol. 1340 (1988), Springer: Springer Berlin), 160-174 · Zbl 0704.35050
[23] Lin, C. S.; Ni, W. M.; Takagi, I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72, 1, 1-27 (1988) · Zbl 0676.35030
[24] Lin, F.; Ni, W. M.; Wei, J., On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60, 2, 252-281 (2007) · Zbl 1170.35424
[25] Lin, C. S.; Takagi, I., Method of rotating planes applied to a singularly perturbed Neumann problem, Calc. Var. Partial Differential Equations, 13, 4, 519-536 (2001) · Zbl 1221.35170
[26] Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15, 2, 401-454 (1979) · Zbl 0445.35063
[27] McLeod, K., Uniqueness of positive radial solutions of \(\Delta u + f(u) = 0\) in \(R^N\). II, Trans. Amer. Math. Soc., 339, 2, 495-505 (1993) · Zbl 0804.35034
[28] McLeod, K.; Serrin, J., Uniqueness of positive radial solutions of \(\Delta u + f(u) = 0\) in \(R^n\), Arch. Ration. Mech. Anal., 99, 2, 115-145 (1987) · Zbl 0667.35023
[29] Miyamoto, Y., Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., 256, 3, 747-776 (2009) · Zbl 1166.35024
[30] Miyamoto, Y., Global branch from the second eigenvalue for a semilinear Neumann problem in a ball, J. Differential Equations, 249, 8, 1853-1870 (2010) · Zbl 1201.35100
[31] Miyamoto, Y.; Yagasaki, K., Monotonicity of the first eigenvalue and the global bifurcation diagram for the branch of interior peak solutions, J. Differential Equations, 254, 2, 342-367 (2013) · Zbl 1388.35061
[32] Nehari, Z., On a nonlinear differential equation arising in nuclear physics, Proc. R. Ir. Acad. Sect. A, 62, 117-135 (1963) · Zbl 0124.30204
[33] Ni, W. M.; Nussbaum, R. D., Uniqueness and nonuniqueness for positive radial solutions of \(\Delta u + f(u, r) = 0\), Comm. Pure Appl. Math., 38, 1, 67-108 (1985) · Zbl 0581.35021
[34] Ni, W. M.; Takagi, I., On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc., 297, 1, 351-368 (1986) · Zbl 0635.35031
[35] Ni, W. M.; Takagi, I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44, 7, 819-851 (1991) · Zbl 0754.35042
[36] Ni, W. M.; Takagi, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70, 2, 247-281 (1993) · Zbl 0796.35056
[37] Ouyang, T.; Shi, J., Exact multiplicity of positive solutions for a class of semilinear problem. II, J. Differential Equations, 158, 2, 94-151 (1999) · Zbl 0947.35067
[38] Peletier, L. A.; Serrin, J., Uniqueness of positive solutions of semilinear equations in \(R^n\), Arch. Ration. Mech. Anal., 81, 2, 181-197 (1983) · Zbl 0516.35031
[39] Peletier, L. A.; Serrin, J., Uniqueness of nonnegative solutions of semilinear equations in \(R^n\), J. Differential Equations, 61, 3, 380-397 (1986) · Zbl 0577.35035
[40] Wei, J., On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. (2), 50, 2, 159-178 (1998) · Zbl 0918.35024
[41] Wei, J.; Winter, M., Multi-peak solutions for a wide class of singular perturbation problems, J. Lond. Math. Soc. (2), 59, 2, 585-606 (1999) · Zbl 0922.35025
[42] Wei, J.; Yan, S., Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth, J. Math. Pures Appl. (9), 88, 4, 350-378 (2007) · Zbl 1189.35119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.